Shortcuts

Source code for torch.nn.modules.container

import warnings
from collections import OrderedDict
from torch._six import container_abcs
from itertools import islice
import operator

import torch
from .module import Module


class Container(Module):

    def __init__(self, **kwargs):
        super(Container, self).__init__()
        # DeprecationWarning is ignored by default <sigh>
        warnings.warn("nn.Container is deprecated. All of it's functionality "
                      "is now implemented in nn.Module. Subclass that instead.")
        for key, value in kwargs.items():
            self.add_module(key, value)


[docs]class Sequential(Module): r"""A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ordered dict of modules can also be passed in. To make it easier to understand, here is a small example:: # Example of using Sequential model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU() ) # Example of using Sequential with OrderedDict model = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(1,20,5)), ('relu1', nn.ReLU()), ('conv2', nn.Conv2d(20,64,5)), ('relu2', nn.ReLU()) ])) """ def __init__(self, *args): super(Sequential, self).__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for key, module in args[0].items(): self.add_module(key, module) else: for idx, module in enumerate(args): self.add_module(str(idx), module) def _get_item_by_idx(self, iterator, idx): """Get the idx-th item of the iterator""" size = len(self) idx = operator.index(idx) if not -size <= idx < size: raise IndexError('index {} is out of range'.format(idx)) idx %= size return next(islice(iterator, idx, None)) def __getitem__(self, idx): if isinstance(idx, slice): return self.__class__(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def __setitem__(self, idx, module): key = self._get_item_by_idx(self._modules.keys(), idx) return setattr(self, key, module) def __delitem__(self, idx): if isinstance(idx, slice): for key in list(self._modules.keys())[idx]: delattr(self, key) else: key = self._get_item_by_idx(self._modules.keys(), idx) delattr(self, key) def __len__(self): return len(self._modules) def __dir__(self): keys = super(Sequential, self).__dir__() keys = [key for key in keys if not key.isdigit()] return keys def forward(self, input): for module in self._modules.values(): input = module(input) return input
[docs]class ModuleList(Module): r"""Holds submodules in a list. ModuleList can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by all Module methods. Arguments: modules (iterable, optional): an iterable of modules to add Example:: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) def forward(self, x): # ModuleList can act as an iterable, or be indexed using ints for i, l in enumerate(self.linears): x = self.linears[i // 2](x) + l(x) return x """ def __init__(self, modules=None): super(ModuleList, self).__init__() if modules is not None: self += modules def _get_abs_string_index(self, idx): """Get the absolute index for the list of modules""" idx = operator.index(idx) if not (-len(self) <= idx < len(self)): raise IndexError('index {} is out of range'.format(idx)) if idx < 0: idx += len(self) return str(idx) def __getitem__(self, idx): if isinstance(idx, slice): return self.__class__(list(self._modules.values())[idx]) else: return self._modules[self._get_abs_string_index(idx)] def __setitem__(self, idx, module): idx = self._get_abs_string_index(idx) return setattr(self, str(idx), module) def __delitem__(self, idx): if isinstance(idx, slice): for k in range(len(self._modules))[idx]: delattr(self, str(k)) else: delattr(self, self._get_abs_string_index(idx)) # To preserve numbering, self._modules is being reconstructed with modules after deletion str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) def __len__(self): return len(self._modules) def __iter__(self): return iter(self._modules.values()) def __iadd__(self, modules): return self.extend(modules) def __dir__(self): keys = super(ModuleList, self).__dir__() keys = [key for key in keys if not key.isdigit()] return keys
[docs] def insert(self, index, module): r"""Insert a given module before a given index in the list. Arguments: index (int): index to insert. module (nn.Module): module to insert """ for i in range(len(self._modules), index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module
[docs] def append(self, module): r"""Appends a given module to the end of the list. Arguments: module (nn.Module): module to append """ self.add_module(str(len(self)), module) return self
[docs] def extend(self, modules): r"""Appends modules from a Python iterable to the end of the list. Arguments: modules (iterable): iterable of modules to append """ if not isinstance(modules, container_abcs.Iterable): raise TypeError("ModuleList.extend should be called with an " "iterable, but got " + type(modules).__name__) offset = len(self) for i, module in enumerate(modules): self.add_module(str(offset + i), module) return self
[docs]class ModuleDict(Module): r"""Holds submodules in a dictionary. ModuleDict can be indexed like a regular Python dictionary, but modules it contains are properly registered, and will be visible by all Module methods. Arguments: modules (iterable, optional): a mapping (dictionary) of (string: module) or an iterable of key/value pairs of type (string, module) Example:: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.choices = nn.ModuleDict({ 'conv': nn.Conv2d(10, 10, 3), 'pool': nn.MaxPool2d(3) }) self.activations = nn.ModuleDict([ ['lrelu', nn.LeakyReLU()], ['prelu', nn.PReLU()] ]) def forward(self, x, choice, act): x = self.choices[choice](x) x = self.activations[act](x) return x """ def __init__(self, modules=None): super(ModuleDict, self).__init__() if modules is not None: self.update(modules) def __getitem__(self, key): return self._modules[key] def __setitem__(self, key, module): self.add_module(key, module) def __delitem__(self, key): del self._modules[key] def __len__(self): return len(self._modules) def __iter__(self): return iter(self._modules) def __contains__(self, key): return key in self._modules
[docs] def clear(self): """Remove all items from the ModuleDict. """ self._modules.clear()
[docs] def pop(self, key): r"""Remove key from the ModuleDict and return its module. Arguments: key (string): key to pop from the ModuleDict """ v = self[key] del self[key] return v
[docs] def keys(self): r"""Return an iterable of the ModuleDict keys. """ return self._modules.keys()
[docs] def items(self): r"""Return an iterable of the ModuleDict key/value pairs. """ return self._modules.items()
[docs] def values(self): r"""Return an iterable of the ModuleDict values. """ return self._modules.values()
[docs] def update(self, modules): r"""Update the ModuleDict with the key/value pairs from a mapping or an iterable, overwriting existing keys. Arguments: modules (iterable): a mapping (dictionary) of (string: :class:`~torch.nn.Module``) or an iterable of key/value pairs of type (string, :class:`~torch.nn.Module``) """ if not isinstance(modules, container_abcs.Iterable): raise TypeError("ModuleDict.update should be called with an " "iterable of key/value pairs, but got " + type(modules).__name__) if isinstance(modules, container_abcs.Mapping): if isinstance(modules, OrderedDict): for key, module in modules.items(): self[key] = module else: for key, module in sorted(modules.items()): self[key] = module else: for j, m in enumerate(modules): if not isinstance(m, container_abcs.Iterable): raise TypeError("ModuleDict update sequence element " "#" + str(j) + " should be Iterable; is" + type(m).__name__) if not len(m) == 2: raise ValueError("ModuleDict update sequence element " "#" + str(j) + " has length " + str(len(m)) + "; 2 is required") self[m[0]] = m[1]
[docs]class ParameterList(Module): r"""Holds parameters in a list. ParameterList can be indexed like a regular Python list, but parameters it contains are properly registered, and will be visible by all Module methods. Arguments: parameters (iterable, optional): an iterable of :class:`~torch.nn.Parameter`` to add Example:: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.params = nn.ParameterList([nn.Parameter(torch.randn(10, 10)) for i in range(10)]) def forward(self, x): # ParameterList can act as an iterable, or be indexed using ints for i, p in enumerate(self.params): x = self.params[i // 2].mm(x) + p.mm(x) return x """ def __init__(self, parameters=None): super(ParameterList, self).__init__() if parameters is not None: self += parameters def _get_abs_string_index(self, idx): """Get the absolute index for the list of modules""" idx = operator.index(idx) if not (-len(self) <= idx < len(self)): raise IndexError('index {} is out of range'.format(idx)) if idx < 0: idx += len(self) return str(idx) def __getitem__(self, idx): if isinstance(idx, slice): return self.__class__(list(self._parameters.values())[idx]) else: idx = self._get_abs_string_index(idx) return self._parameters[str(idx)] def __setitem__(self, idx, param): idx = self._get_abs_string_index(idx) return self.register_parameter(str(idx), param) def __len__(self): return len(self._parameters) def __iter__(self): return iter(self._parameters.values()) def __iadd__(self, parameters): return self.extend(parameters) def __dir__(self): keys = super(ParameterList, self).__dir__() keys = [key for key in keys if not key.isdigit()] return keys
[docs] def append(self, parameter): """Appends a given parameter at the end of the list. Arguments: parameter (nn.Parameter): parameter to append """ self.register_parameter(str(len(self)), parameter) return self
[docs] def extend(self, parameters): """Appends parameters from a Python iterable to the end of the list. Arguments: parameters (iterable): iterable of parameters to append """ if not isinstance(parameters, container_abcs.Iterable): raise TypeError("ParameterList.extend should be called with an " "iterable, but got " + type(parameters).__name__) offset = len(self) for i, param in enumerate(parameters): self.register_parameter(str(offset + i), param) return self
def extra_repr(self): child_lines = [] for k, p in self._parameters.items(): size_str = 'x'.join(str(size) for size in p.size()) device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) parastr = 'Parameter containing: [{} of size {}{}]'.format( torch.typename(p.data), size_str, device_str) child_lines.append(' (' + str(k) + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr
[docs]class ParameterDict(Module): r"""Holds parameters in a dictionary. ParameterDict can be indexed like a regular Python dictionary, but parameters it contains are properly registered, and will be visible by all Module methods. Arguments: parameters (iterable, optional): a mapping (dictionary) of (string : :class:`~torch.nn.Parameter`) or an iterable of key,value pairs of type (string, :class:`~torch.nn.Parameter`) Example:: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.params = nn.ParameterDict({ 'left': nn.Parameter(torch.randn(5, 10)), 'right': nn.Parameter(torch.randn(5, 10)) }) def forward(self, x, choice): x = self.params[choice].mm(x) return x """ def __init__(self, parameters=None): super(ParameterDict, self).__init__() if parameters is not None: self.update(parameters) def __getitem__(self, key): return self._parameters[key] def __setitem__(self, key, parameter): self.register_parameter(key, parameter) def __delitem__(self, key): del self._parameters[key] def __len__(self): return len(self._parameters) def __iter__(self): return iter(self._parameters.keys()) def __contains__(self, key): return key in self._parameters
[docs] def clear(self): """Remove all items from the ParameterDict. """ self._parameters.clear()
[docs] def pop(self, key): r"""Remove key from the ParameterDict and return its parameter. Arguments: key (string): key to pop from the ParameterDict """ v = self[key] del self[key] return v
[docs] def keys(self): r"""Return an iterable of the ParameterDict keys. """ return self._parameters.keys()
[docs] def items(self): r"""Return an iterable of the ParameterDict key/value pairs. """ return self._parameters.items()
[docs] def values(self): r"""Return an iterable of the ParameterDict values. """ return self._parameters.values()
[docs] def update(self, parameters): r"""Update the ParameterDict with the key/value pairs from a mapping or an iterable, overwriting existing keys. Arguments: parameters (iterable): a mapping (dictionary) of (string : :class:`~torch.nn.Parameter`) or an iterable of key/value pairs of type (string, :class:`~torch.nn.Parameter`) """ if not isinstance(parameters, container_abcs.Iterable): raise TypeError("ParametersDict.update should be called with an " "iterable of key/value pairs, but got " + type(parameters).__name__) if isinstance(parameters, container_abcs.Mapping): if isinstance(parameters, OrderedDict): for key, parameter in parameters.items(): self[key] = parameter else: for key, parameter in sorted(parameters.items()): self[key] = parameter else: for j, p in enumerate(parameters): if not isinstance(p, container_abcs.Iterable): raise TypeError("ParameterDict update sequence element " "#" + str(j) + " should be Iterable; is" + type(p).__name__) if not len(p) == 2: raise ValueError("ParameterDict update sequence element " "#" + str(j) + " has length " + str(len(p)) + "; 2 is required") self[p[0]] = p[1]
def extra_repr(self): child_lines = [] for k, p in self._parameters.items(): size_str = 'x'.join(str(size) for size in p.size()) device_str = '' if not p.is_cuda else ' (GPU {})'.format(p.get_device()) parastr = 'Parameter containing: [{} of size {}{}]'.format( torch.typename(p.data), size_str, device_str) child_lines.append(' (' + k + '): ' + parastr) tmpstr = '\n'.join(child_lines) return tmpstr

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources