Shortcuts

Source code for torch.nn.modules.normalization

import torch
import numbers
from torch.nn.parameter import Parameter
from .module import Module
from .batchnorm import _BatchNorm
from .. import functional as F
from .. import init
from ..._jit_internal import weak_module, weak_script_method


[docs]@weak_module class LocalResponseNorm(Module): r"""Applies local response normalization over an input signal composed of several input planes, where channels occupy the second dimension. Applies normalization across channels. .. math:: b_{c} = a_{c}\left(k + \frac{\alpha}{n} \sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta} Args: size: amount of neighbouring channels used for normalization alpha: multiplicative factor. Default: 0.0001 beta: exponent. Default: 0.75 k: additive factor. Default: 1 Shape: - Input: :math:`(N, C, ...)` - Output: :math:`(N, C, ...)` (same shape as input) Examples:: >>> lrn = nn.LocalResponseNorm(2) >>> signal_2d = torch.randn(32, 5, 24, 24) >>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7) >>> output_2d = lrn(signal_2d) >>> output_4d = lrn(signal_4d) """ __constants__ = ['size', 'alpha', 'beta', 'k'] def __init__(self, size, alpha=1e-4, beta=0.75, k=1.): super(LocalResponseNorm, self).__init__() self.size = size self.alpha = alpha self.beta = beta self.k = k @weak_script_method def forward(self, input): return F.local_response_norm(input, self.size, self.alpha, self.beta, self.k) def extra_repr(self): return '{size}, alpha={alpha}, beta={beta}, k={k}'.format(**self.__dict__)
class CrossMapLRN2d(Module): def __init__(self, size, alpha=1e-4, beta=0.75, k=1): super(CrossMapLRN2d, self).__init__() self.size = size self.alpha = alpha self.beta = beta self.k = k def forward(self, input): return self._backend.CrossMapLRN2d(self.size, self.alpha, self.beta, self.k)(input) def extra_repr(self): return '{size}, alpha={alpha}, beta={beta}, k={k}'.format(**self.__dict__)
[docs]@weak_module class LayerNorm(Module): r"""Applies Layer Normalization over a mini-batch of inputs as described in the paper `Layer Normalization`_ . .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated separately over the last certain number dimensions which have to be of the shape specified by :attr:`normalized_shape`. :math:`\gamma` and :math:`\beta` are learnable affine transform parameters of :attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``. .. note:: Unlike Batch Normalization and Instance Normalization, which applies scalar scale and bias for each entire channel/plane with the :attr:`affine` option, Layer Normalization applies per-element scale and bias with :attr:`elementwise_affine`. This layer uses statistics computed from input data in both training and evaluation modes. Args: normalized_shape (int or list or torch.Size): input shape from an expected input of size .. math:: [* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1] \times \ldots \times \text{normalized\_shape}[-1]] If a single integer is used, it is treated as a singleton list, and this module will normalize over the last dimension which is expected to be of that specific size. eps: a value added to the denominator for numerical stability. Default: 1e-5 elementwise_affine: a boolean value that when set to ``True``, this module has learnable per-element affine parameters initialized to ones (for weights) and zeros (for biases). Default: ``True``. Shape: - Input: :math:`(N, *)` - Output: :math:`(N, *)` (same shape as input) Examples:: >>> input = torch.randn(20, 5, 10, 10) >>> # With Learnable Parameters >>> m = nn.LayerNorm(input.size()[1:]) >>> # Without Learnable Parameters >>> m = nn.LayerNorm(input.size()[1:], elementwise_affine=False) >>> # Normalize over last two dimensions >>> m = nn.LayerNorm([10, 10]) >>> # Normalize over last dimension of size 10 >>> m = nn.LayerNorm(10) >>> # Activating the module >>> output = m(input) .. _`Layer Normalization`: https://arxiv.org/abs/1607.06450 """ __constants__ = ['normalized_shape', 'weight', 'bias', 'eps'] def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True): super(LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = torch.Size(normalized_shape) self.eps = eps self.elementwise_affine = elementwise_affine if self.elementwise_affine: self.weight = Parameter(torch.Tensor(*normalized_shape)) self.bias = Parameter(torch.Tensor(*normalized_shape)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): if self.elementwise_affine: init.ones_(self.weight) init.zeros_(self.bias) @weak_script_method def forward(self, input): return F.layer_norm( input, self.normalized_shape, self.weight, self.bias, self.eps) def extra_repr(self): return '{normalized_shape}, eps={eps}, ' \ 'elementwise_affine={elementwise_affine}'.format(**self.__dict__)
[docs]@weak_module class GroupNorm(Module): r"""Applies Group Normalization over a mini-batch of inputs as described in the paper `Group Normalization`_ . .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The input channels are separated into :attr:`num_groups` groups, each containing ``num_channels / num_groups`` channels. The mean and standard-deviation are calculated separately over the each group. :math:`\gamma` and :math:`\beta` are learnable per-channel affine transform parameter vectorss of size :attr:`num_channels` if :attr:`affine` is ``True``. This layer uses statistics computed from input data in both training and evaluation modes. Args: num_groups (int): number of groups to separate the channels into num_channels (int): number of channels expected in input eps: a value added to the denominator for numerical stability. Default: 1e-5 affine: a boolean value that when set to ``True``, this module has learnable per-channel affine parameters initialized to ones (for weights) and zeros (for biases). Default: ``True``. Shape: - Input: :math:`(N, num\_channels, *)` - Output: :math:`(N, num\_channels, *)` (same shape as input) Examples:: >>> input = torch.randn(20, 6, 10, 10) >>> # Separate 6 channels into 3 groups >>> m = nn.GroupNorm(3, 6) >>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm) >>> m = nn.GroupNorm(6, 6) >>> # Put all 6 channels into a single group (equivalent with LayerNorm) >>> m = nn.GroupNorm(1, 6) >>> # Activating the module >>> output = m(input) .. _`Group Normalization`: https://arxiv.org/abs/1803.08494 """ __constants__ = ['num_groups', 'num_channels', 'eps', 'affine', 'weight', 'bias'] def __init__(self, num_groups, num_channels, eps=1e-5, affine=True): super(GroupNorm, self).__init__() self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(torch.Tensor(num_channels)) self.bias = Parameter(torch.Tensor(num_channels)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): if self.affine: init.ones_(self.weight) init.zeros_(self.bias) @weak_script_method def forward(self, input): return F.group_norm( input, self.num_groups, self.weight, self.bias, self.eps) def extra_repr(self): return '{num_groups}, {num_channels}, eps={eps}, ' \ 'affine={affine}'.format(**self.__dict__)
# TODO: ContrastiveNorm2d # TODO: DivisiveNorm2d # TODO: SubtractiveNorm2d

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources