Source code for torch.nn.modules.pixelshuffle
from .module import Module
from .. import functional as F
from ..._jit_internal import weak_module, weak_script_method
[docs]@weak_module
class PixelShuffle(Module):
r"""Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
to a tensor of shape :math:`(C, H \times r, W \times r)`.
This is useful for implementing efficient sub-pixel convolution
with a stride of :math:`1/r`.
Look at the paper:
`Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
by Shi et. al (2016) for more details.
Args:
upscale_factor (int): factor to increase spatial resolution by
Shape:
- Input: :math:`(N, C \times \text{upscale_factor}^2, H, W)`
- Output: :math:`(N, C, H \times \text{upscale_factor}, W \times \text{upscale_factor})`
Examples::
>>> pixel_shuffle = nn.PixelShuffle(3)
>>> input = torch.randn(1, 9, 4, 4)
>>> output = pixel_shuffle(input)
>>> print(output.size())
torch.Size([1, 1, 12, 12])
.. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
https://arxiv.org/abs/1609.05158
"""
__constants__ = ['upscale_factor']
def __init__(self, upscale_factor):
super(PixelShuffle, self).__init__()
self.upscale_factor = upscale_factor
@weak_script_method
def forward(self, input):
return F.pixel_shuffle(input, self.upscale_factor)
def extra_repr(self):
return 'upscale_factor={}'.format(self.upscale_factor)