Source code for torch.optim.adadelta
import torch
from .optimizer import Optimizer
[docs]class Adadelta(Optimizer):
"""Implements Adadelta algorithm.
It has been proposed in `ADADELTA: An Adaptive Learning Rate Method`__.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
rho (float, optional): coefficient used for computing a running average
of squared gradients (default: 0.9)
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-6)
lr (float, optional): coefficient that scale delta before it is applied
to the parameters (default: 1.0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
__ https://arxiv.org/abs/1212.5701
"""
def __init__(self, params, lr=1.0, rho=0.9, eps=1e-6, weight_decay=0):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= rho <= 1.0:
raise ValueError("Invalid rho value: {}".format(rho))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, rho=rho, eps=eps, weight_decay=weight_decay)
super(Adadelta, self).__init__(params, defaults)
[docs] def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adadelta does not support sparse gradients')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['square_avg'] = torch.zeros_like(p.data)
state['acc_delta'] = torch.zeros_like(p.data)
square_avg, acc_delta = state['square_avg'], state['acc_delta']
rho, eps = group['rho'], group['eps']
state['step'] += 1
if group['weight_decay'] != 0:
grad = grad.add(group['weight_decay'], p.data)
square_avg.mul_(rho).addcmul_(1 - rho, grad, grad)
std = square_avg.add(eps).sqrt_()
delta = acc_delta.add(eps).sqrt_().div_(std).mul_(grad)
p.data.add_(-group['lr'], delta)
acc_delta.mul_(rho).addcmul_(1 - rho, delta, delta)
return loss