Source code for torch.optim.lbfgs
import torch
from functools import reduce
from .optimizer import Optimizer
[docs]class LBFGS(Optimizer):
"""Implements L-BFGS algorithm.
.. warning::
This optimizer doesn't support per-parameter options and parameter
groups (there can be only one).
.. warning::
Right now all parameters have to be on a single device. This will be
improved in the future.
.. note::
This is a very memory intensive optimizer (it requires additional
``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory
try reducing the history size, or use a different algorithm.
Arguments:
lr (float): learning rate (default: 1)
max_iter (int): maximal number of iterations per optimization step
(default: 20)
max_eval (int): maximal number of function evaluations per optimization
step (default: max_iter * 1.25).
tolerance_grad (float): termination tolerance on first order optimality
(default: 1e-5).
tolerance_change (float): termination tolerance on function
value/parameter changes (default: 1e-9).
history_size (int): update history size (default: 100).
"""
def __init__(self, params, lr=1, max_iter=20, max_eval=None,
tolerance_grad=1e-5, tolerance_change=1e-9, history_size=100,
line_search_fn=None):
if max_eval is None:
max_eval = max_iter * 5 // 4
defaults = dict(lr=lr, max_iter=max_iter, max_eval=max_eval,
tolerance_grad=tolerance_grad, tolerance_change=tolerance_change,
history_size=history_size, line_search_fn=line_search_fn)
super(LBFGS, self).__init__(params, defaults)
if len(self.param_groups) != 1:
raise ValueError("LBFGS doesn't support per-parameter options "
"(parameter groups)")
self._params = self.param_groups[0]['params']
self._numel_cache = None
def _numel(self):
if self._numel_cache is None:
self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
return self._numel_cache
def _gather_flat_grad(self):
views = []
for p in self._params:
if p.grad is None:
view = p.data.new(p.data.numel()).zero_()
elif p.grad.data.is_sparse:
view = p.grad.data.to_dense().view(-1)
else:
view = p.grad.data.view(-1)
views.append(view)
return torch.cat(views, 0)
def _add_grad(self, step_size, update):
offset = 0
for p in self._params:
numel = p.numel()
# view as to avoid deprecated pointwise semantics
p.data.add_(step_size, update[offset:offset + numel].view_as(p.data))
offset += numel
assert offset == self._numel()
[docs] def step(self, closure):
"""Performs a single optimization step.
Arguments:
closure (callable): A closure that reevaluates the model
and returns the loss.
"""
assert len(self.param_groups) == 1
group = self.param_groups[0]
lr = group['lr']
max_iter = group['max_iter']
max_eval = group['max_eval']
tolerance_grad = group['tolerance_grad']
tolerance_change = group['tolerance_change']
line_search_fn = group['line_search_fn']
history_size = group['history_size']
# NOTE: LBFGS has only global state, but we register it as state for
# the first param, because this helps with casting in load_state_dict
state = self.state[self._params[0]]
state.setdefault('func_evals', 0)
state.setdefault('n_iter', 0)
# evaluate initial f(x) and df/dx
orig_loss = closure()
loss = float(orig_loss)
current_evals = 1
state['func_evals'] += 1
flat_grad = self._gather_flat_grad()
abs_grad_sum = flat_grad.abs().sum()
if abs_grad_sum <= tolerance_grad:
return orig_loss
# tensors cached in state (for tracing)
d = state.get('d')
t = state.get('t')
old_dirs = state.get('old_dirs')
old_stps = state.get('old_stps')
H_diag = state.get('H_diag')
prev_flat_grad = state.get('prev_flat_grad')
prev_loss = state.get('prev_loss')
n_iter = 0
# optimize for a max of max_iter iterations
while n_iter < max_iter:
# keep track of nb of iterations
n_iter += 1
state['n_iter'] += 1
############################################################
# compute gradient descent direction
############################################################
if state['n_iter'] == 1:
d = flat_grad.neg()
old_dirs = []
old_stps = []
H_diag = 1
else:
# do lbfgs update (update memory)
y = flat_grad.sub(prev_flat_grad)
s = d.mul(t)
ys = y.dot(s) # y*s
if ys > 1e-10:
# updating memory
if len(old_dirs) == history_size:
# shift history by one (limited-memory)
old_dirs.pop(0)
old_stps.pop(0)
# store new direction/step
old_dirs.append(y)
old_stps.append(s)
# update scale of initial Hessian approximation
H_diag = ys / y.dot(y) # (y*y)
# compute the approximate (L-BFGS) inverse Hessian
# multiplied by the gradient
num_old = len(old_dirs)
if 'ro' not in state:
state['ro'] = [None] * history_size
state['al'] = [None] * history_size
ro = state['ro']
al = state['al']
for i in range(num_old):
ro[i] = 1. / old_dirs[i].dot(old_stps[i])
# iteration in L-BFGS loop collapsed to use just one buffer
q = flat_grad.neg()
for i in range(num_old - 1, -1, -1):
al[i] = old_stps[i].dot(q) * ro[i]
q.add_(-al[i], old_dirs[i])
# multiply by initial Hessian
# r/d is the final direction
d = r = torch.mul(q, H_diag)
for i in range(num_old):
be_i = old_dirs[i].dot(r) * ro[i]
r.add_(al[i] - be_i, old_stps[i])
if prev_flat_grad is None:
prev_flat_grad = flat_grad.clone()
else:
prev_flat_grad.copy_(flat_grad)
prev_loss = loss
############################################################
# compute step length
############################################################
# reset initial guess for step size
if state['n_iter'] == 1:
t = min(1., 1. / abs_grad_sum) * lr
else:
t = lr
# directional derivative
gtd = flat_grad.dot(d) # g * d
# optional line search: user function
ls_func_evals = 0
if line_search_fn is not None:
# perform line search, using user function
raise RuntimeError("line search function is not supported yet")
else:
# no line search, simply move with fixed-step
self._add_grad(t, d)
if n_iter != max_iter:
# re-evaluate function only if not in last iteration
# the reason we do this: in a stochastic setting,
# no use to re-evaluate that function here
loss = float(closure())
flat_grad = self._gather_flat_grad()
abs_grad_sum = flat_grad.abs().sum()
ls_func_evals = 1
# update func eval
current_evals += ls_func_evals
state['func_evals'] += ls_func_evals
############################################################
# check conditions
############################################################
if n_iter == max_iter:
break
if current_evals >= max_eval:
break
if abs_grad_sum <= tolerance_grad:
break
if gtd > -tolerance_change:
break
if d.mul(t).abs_().sum() <= tolerance_change:
break
if abs(loss - prev_loss) < tolerance_change:
break
state['d'] = d
state['t'] = t
state['old_dirs'] = old_dirs
state['old_stps'] = old_stps
state['H_diag'] = H_diag
state['prev_flat_grad'] = prev_flat_grad
state['prev_loss'] = prev_loss
return orig_loss