Shortcuts

Source code for torch.utils.data.dataset

import bisect
import warnings

from torch._utils import _accumulate
from torch import randperm


[docs]class Dataset(object): """An abstract class representing a Dataset. All other datasets should subclass it. All subclasses should override ``__len__``, that provides the size of the dataset, and ``__getitem__``, supporting integer indexing in range from 0 to len(self) exclusive. """ def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def __add__(self, other): return ConcatDataset([self, other])
[docs]class TensorDataset(Dataset): """Dataset wrapping tensors. Each sample will be retrieved by indexing tensors along the first dimension. Arguments: *tensors (Tensor): tensors that have the same size of the first dimension. """ def __init__(self, *tensors): assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors) self.tensors = tensors def __getitem__(self, index): return tuple(tensor[index] for tensor in self.tensors) def __len__(self): return self.tensors[0].size(0)
[docs]class ConcatDataset(Dataset): """ Dataset to concatenate multiple datasets. Purpose: useful to assemble different existing datasets, possibly large-scale datasets as the concatenation operation is done in an on-the-fly manner. Arguments: datasets (sequence): List of datasets to be concatenated """ @staticmethod def cumsum(sequence): r, s = [], 0 for e in sequence: l = len(e) r.append(l + s) s += l return r def __init__(self, datasets): super(ConcatDataset, self).__init__() assert len(datasets) > 0, 'datasets should not be an empty iterable' self.datasets = list(datasets) self.cumulative_sizes = self.cumsum(self.datasets) def __len__(self): return self.cumulative_sizes[-1] def __getitem__(self, idx): dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) if dataset_idx == 0: sample_idx = idx else: sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] return self.datasets[dataset_idx][sample_idx] @property def cummulative_sizes(self): warnings.warn("cummulative_sizes attribute is renamed to " "cumulative_sizes", DeprecationWarning, stacklevel=2) return self.cumulative_sizes
[docs]class Subset(Dataset): """ Subset of a dataset at specified indices. Arguments: dataset (Dataset): The whole Dataset indices (sequence): Indices in the whole set selected for subset """ def __init__(self, dataset, indices): self.dataset = dataset self.indices = indices def __getitem__(self, idx): return self.dataset[self.indices[idx]] def __len__(self): return len(self.indices)
[docs]def random_split(dataset, lengths): """ Randomly split a dataset into non-overlapping new datasets of given lengths. Arguments: dataset (Dataset): Dataset to be split lengths (sequence): lengths of splits to be produced """ if sum(lengths) != len(dataset): raise ValueError("Sum of input lengths does not equal the length of the input dataset!") indices = randperm(sum(lengths)) return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources