View source on GitHub |
A Dataset
of pseudorandom values.
tf.compat.v1.data.experimental.RandomDataset(
seed=None
)
element_spec
: The type specification of an element of this dataset.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3]).element_spec
TensorSpec(shape=(), dtype=tf.int32, name=None)
output_classes
: Returns the class of each component of an element of this dataset. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.compat.v1.data.get_output_classes(dataset)
.
output_shapes
: Returns the shape of each component of an element of this dataset. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.compat.v1.data.get_output_shapes(dataset)
.
output_types
: Returns the type of each component of an element of this dataset. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.compat.v1.data.get_output_types(dataset)
.
__iter__
__iter__()
Creates an Iterator
for enumerating the elements of this dataset.
The returned iterator implements the Python iterator protocol and therefore can only be used in eager mode.
An Iterator
over the elements of this dataset.
RuntimeError
: If not inside of tf.function and not executing eagerly.apply
apply(
transformation_func
)
Applies a transformation function to this dataset.
apply
enables chaining of custom Dataset
transformations, which are
represented as functions that take one Dataset
argument and return a
transformed Dataset
.
>>> dataset = tf.data.Dataset.range(100)
>>> def dataset_fn(ds):
... return ds.filter(lambda x: x < 5)
>>> dataset = dataset.apply(dataset_fn)
>>> list(dataset.as_numpy_iterator())
[0, 1, 2, 3, 4]
transformation_func
: A function that takes one Dataset
argument and
returns a Dataset
.Dataset
: The Dataset
returned by applying transformation_func
to this
dataset.as_numpy_iterator
as_numpy_iterator()
Returns an iterator which converts all elements of the dataset to numpy.
Use as_numpy_iterator
to inspect the content of your dataset. To see
element shapes and types, print dataset elements directly instead of using
as_numpy_iterator
.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> for element in dataset:
... print(element)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
This method requires that you are running in eager mode and the dataset's
element_spec contains only TensorSpec
components.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> for element in dataset.as_numpy_iterator():
... print(element)
1
2
3
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> print(list(dataset.as_numpy_iterator()))
[1, 2, 3]
as_numpy_iterator()
will preserve the nested structure of dataset
elements.
>>> dataset = tf.data.Dataset.from_tensor_slices({'a': ([1, 2], [3, 4]),
... 'b': [5, 6]})
>>> list(dataset.as_numpy_iterator()) == [{'a': (1, 3), 'b': 5},
... {'a': (2, 4), 'b': 6}]
True
An iterable over the elements of the dataset, with their tensors converted to numpy arrays.
TypeError
: if an element contains a non-Tensor
value.RuntimeError
: if eager execution is not enabled.batch
batch(
batch_size, drop_remainder=False
)
Combines consecutive elements of this dataset into batches.
>>> dataset = tf.data.Dataset.range(8)
>>> dataset = dataset.batch(3)
>>> list(dataset.as_numpy_iterator())
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7])]
>>> dataset = tf.data.Dataset.range(8)
>>> dataset = dataset.batch(3, drop_remainder=True)
>>> list(dataset.as_numpy_iterator())
[array([0, 1, 2]), array([3, 4, 5])]
The components of the resulting element will have an additional outer
dimension, which will be batch_size
(or N % batch_size
for the last
element if batch_size
does not divide the number of input elements N
evenly and drop_remainder
is False
). If your program depends on the
batches having the same outer dimension, you should set the drop_remainder
argument to True
to prevent the smaller batch from being produced.
batch_size
: A tf.int64
scalar tf.Tensor
, representing the number of
consecutive elements of this dataset to combine in a single batch.drop_remainder
: (Optional.) A tf.bool
scalar tf.Tensor
, representing
whether the last batch should be dropped in the case it has fewer than
batch_size
elements; the default behavior is not to drop the smaller
batch.Dataset
: A Dataset
.cache
cache(
filename=''
)
Caches the elements in this dataset.
The first time the dataset is iterated over, its elements will be cached either in the specified file or in memory. Subsequent iterations will use the cached data.
Note: For the cache to be finalized, the input dataset must be iterated through in its entirety. Otherwise, subsequent iterations will not use cached data.
>>> dataset = tf.data.Dataset.range(5)
>>> dataset = dataset.map(lambda x: x**2)
>>> dataset = dataset.cache()
>>> # The first time reading through the data will generate the data using
>>> # `range` and `map`.
>>> list(dataset.as_numpy_iterator())
[0, 1, 4, 9, 16]
>>> # Subsequent iterations read from the cache.
>>> list(dataset.as_numpy_iterator())
[0, 1, 4, 9, 16]
When caching to a file, the cached data will persist across runs. Even the
first iteration through the data will read from the cache file. Changing
the input pipeline before the call to .cache()
will have no effect until
the cache file is removed or the filename is changed.
>>> dataset = tf.data.Dataset.range(5)
>>> dataset = dataset.cache("/path/to/file) # doctest: +SKIP
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[0, 1, 2, 3, 4]
>>> dataset = tf.data.Dataset.range(10)
>>> dataset = dataset.cache("/path/to/file") # Same file! # doctest: +SKIP
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[0, 1, 2, 3, 4]
Note: cache
will produce exactly the same elements during each iteration
through the dataset. If you wish to randomize the iteration order, make sure
to call shuffle
after calling cache
.
filename
: A tf.string
scalar tf.Tensor
, representing the name of a
directory on the filesystem to use for caching elements in this Dataset.
If a filename is not provided, the dataset will be cached in memory.Dataset
: A Dataset
.concatenate
concatenate(
dataset
)
Creates a Dataset
by concatenating the given dataset with this dataset.
>>> a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ]
>>> b = tf.data.Dataset.range(4, 8) # ==> [ 4, 5, 6, 7 ]
>>> ds = a.concatenate(b)
>>> list(ds.as_numpy_iterator())
[1, 2, 3, 4, 5, 6, 7]
>>> # The input dataset and dataset to be concatenated should have the same
>>> # nested structures and output types.
>>> c = tf.data.Dataset.zip((a, b))
>>> a.concatenate(c)
Traceback (most recent call last):
TypeError: Two datasets to concatenate have different types
<dtype: 'int64'> and (tf.int64, tf.int64)
>>> d = tf.data.Dataset.from_tensor_slices(["a", "b", "c"])
>>> a.concatenate(d)
Traceback (most recent call last):
TypeError: Two datasets to concatenate have different types
<dtype: 'int64'> and <dtype: 'string'>
dataset
: Dataset
to be concatenated.Dataset
: A Dataset
.enumerate
enumerate(
start=0
)
Enumerates the elements of this dataset.
It is similar to python's enumerate
.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.enumerate(start=5)
>>> for element in dataset.as_numpy_iterator():
... print(element)
(5, 1)
(6, 2)
(7, 3)
>>> # The nested structure of the input dataset determines the structure of
>>> # elements in the resulting dataset.
>>> dataset = tf.data.Dataset.from_tensor_slices([(7, 8), (9, 10)])
>>> dataset = dataset.enumerate()
>>> for element in dataset.as_numpy_iterator():
... print(element)
(0, array([7, 8], dtype=int32))
(1, array([ 9, 10], dtype=int32))
Dataset
: A Dataset
.filter
filter(
predicate
)
Filters this dataset according to predicate
.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.filter(lambda x: x < 3)
>>> list(dataset.as_numpy_iterator())
[1, 2]
>>> # `tf.math.equal(x, y)` is required for equality comparison
>>> def filter_fn(x):
... return tf.math.equal(x, 1)
>>> dataset = dataset.filter(filter_fn)
>>> list(dataset.as_numpy_iterator())
[1]
predicate
: A function mapping a dataset element to a boolean.Dataset
: The Dataset
containing the elements of this dataset for which
predicate
is True
.filter_with_legacy_function
filter_with_legacy_function(
predicate
)
Filters this dataset according to predicate
. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.filter()
NOTE: This is an escape hatch for existing uses of filter
that do not work
with V2 functions. New uses are strongly discouraged and existing uses
should migrate to filter
as this method will be removed in V2.
predicate
: A function mapping a nested structure of tensors (having shapes
and types defined by self.output_shapes
and self.output_types
) to a
scalar tf.bool
tensor.Dataset
: The Dataset
containing the elements of this dataset for which
predicate
is True
.flat_map
flat_map(
map_func
)
Maps map_func
across this dataset and flattens the result.
Use flat_map
if you want to make sure that the order of your dataset
stays the same. For example, to flatten a dataset of batches into a
dataset of their elements:
>>> dataset = Dataset.from_tensor_slices([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> dataset = dataset.flat_map(lambda x: Dataset.from_tensor_slices(x))
>>> list(dataset.as_numpy_iterator())
[1, 2, 3, 4, 5, 6, 7, 8, 9]
tf.data.Dataset.interleave()
is a generalization of flat_map
, since
flat_map
produces the same output as
tf.data.Dataset.interleave(cycle_length=1)
map_func
: A function mapping a dataset element to a dataset.Dataset
: A Dataset
.from_generator
@staticmethod
from_generator(
generator, output_types, output_shapes=None, args=None
)
Creates a Dataset
whose elements are generated by generator
.
The generator
argument must be a callable object that returns
an object that supports the iter()
protocol (e.g. a generator function).
The elements generated by generator
must be compatible with the given
output_types
and (optional) output_shapes
arguments.
>>> import itertools
>>>
>>> def gen():
... for i in itertools.count(1):
... yield (i, [1] * i)
>>>
>>> dataset = tf.data.Dataset.from_generator(
... gen,
... (tf.int64, tf.int64),
... (tf.TensorShape([]), tf.TensorShape([None])))
>>>
>>> list(dataset.take(3).as_numpy_iterator())
[(1, array([1])), (2, array([1, 1])), (3, array([1, 1, 1]))]
NOTE: The current implementation of Dataset.from_generator()
uses
tf.numpy_function
and inherits the same constraints. In particular, it
requires the Dataset
- and Iterator
-related operations to be placed
on a device in the same process as the Python program that called
Dataset.from_generator()
. The body of generator
will not be
serialized in a GraphDef
, and you should not use this method if you
need to serialize your model and restore it in a different environment.
NOTE: If generator
depends on mutable global variables or other external
state, be aware that the runtime may invoke generator
multiple times
(in order to support repeating the Dataset
) and at any time
between the call to Dataset.from_generator()
and the production of the
first element from the generator. Mutating global variables or external
state can cause undefined behavior, and we recommend that you explicitly
cache any external state in generator
before calling
Dataset.from_generator()
.
generator
: A callable object that returns an object that supports the
iter()
protocol. If args
is not specified, generator
must take no
arguments; otherwise it must take as many arguments as there are values
in args
.output_types
: A nested structure of tf.DType
objects corresponding to
each component of an element yielded by generator
.output_shapes
: (Optional.) A nested structure of tf.TensorShape
objects
corresponding to each component of an element yielded by generator
.args
: (Optional.) A tuple of tf.Tensor
objects that will be evaluated
and passed to generator
as NumPy-array arguments.Dataset
: A Dataset
.from_sparse_tensor_slices
@staticmethod
from_sparse_tensor_slices(
sparse_tensor
)
Splits each rank-N tf.SparseTensor
in this dataset row-wise. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.from_tensor_slices()
.
sparse_tensor
: A tf.SparseTensor
.Dataset
: A Dataset
of rank-(N-1) sparse tensors.from_tensor_slices
@staticmethod
from_tensor_slices(
tensors
)
Creates a Dataset
whose elements are slices of the given tensors.
The given tensors are sliced along their first dimension. This operation preserves the structure of the input tensors, removing the first dimension of each tensor and using it as the dataset dimension. All input tensors must have the same size in their first dimensions.
>>> # Slicing a 1D tensor produces scalar tensor elements.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> list(dataset.as_numpy_iterator())
[1, 2, 3]
>>> # Slicing a 2D tensor produces 1D tensor elements.
>>> dataset = tf.data.Dataset.from_tensor_slices([[1, 2], [3, 4]])
>>> list(dataset.as_numpy_iterator())
[array([1, 2], dtype=int32), array([3, 4], dtype=int32)]
>>> # Slicing a tuple of 1D tensors produces tuple elements containing
>>> # scalar tensors.
>>> dataset = tf.data.Dataset.from_tensor_slices(([1, 2], [3, 4], [5, 6]))
>>> list(dataset.as_numpy_iterator())
[(1, 3, 5), (2, 4, 6)]
>>> # Dictionary structure is also preserved.
>>> dataset = tf.data.Dataset.from_tensor_slices({"a": [1, 2], "b": [3, 4]})
>>> list(dataset.as_numpy_iterator()) == [{'a': 1, 'b': 3},
... {'a': 2, 'b': 4}]
True
>>> # Two tensors can be combined into one Dataset object.
>>> features = tf.constant([[1, 3], [2, 1], [3, 3]]) # ==> 3x2 tensor
>>> labels = tf.constant(['A', 'B', 'A']) # ==> 3x1 tensor
>>> dataset = Dataset.from_tensor_slices((features, labels))
>>> # Both the features and the labels tensors can be converted
>>> # to a Dataset object separately and combined after.
>>> features_dataset = Dataset.from_tensor_slices(features)
>>> labels_dataset = Dataset.from_tensor_slices(labels)
>>> dataset = Dataset.zip((features_dataset, labels_dataset))
>>> # A batched feature and label set can be converted to a Dataset
>>> # in similar fashion.
>>> batched_features = tf.constant([[[1, 3], [2, 3]],
... [[2, 1], [1, 2]],
... [[3, 3], [3, 2]]], shape=(3, 2, 2))
>>> batched_labels = tf.constant([['A', 'A'],
... ['B', 'B'],
... ['A', 'B']], shape=(3, 2, 1))
>>> dataset = Dataset.from_tensor_slices((batched_features, batched_labels))
>>> for element in dataset.as_numpy_iterator():
... print(element)
(array([[1, 3],
[2, 3]], dtype=int32), array([[b'A'],
[b'A']], dtype=object))
(array([[2, 1],
[1, 2]], dtype=int32), array([[b'B'],
[b'B']], dtype=object))
(array([[3, 3],
[3, 2]], dtype=int32), array([[b'A'],
[b'B']], dtype=object))
Note that if tensors
contains a NumPy array, and eager execution is not
enabled, the values will be embedded in the graph as one or more
tf.constant
operations. For large datasets (> 1 GB), this can waste
memory and run into byte limits of graph serialization. If tensors
contains one or more large NumPy arrays, consider the alternative described
in this guide.
tensors
: A dataset element, with each component having the same size in
the first dimension.Dataset
: A Dataset
.from_tensors
@staticmethod
from_tensors(
tensors
)
Creates a Dataset
with a single element, comprising the given tensors.
>>> dataset = tf.data.Dataset.from_tensors([1, 2, 3])
>>> list(dataset.as_numpy_iterator())
[array([1, 2, 3], dtype=int32)]
>>> dataset = tf.data.Dataset.from_tensors(([1, 2, 3], 'A'))
>>> list(dataset.as_numpy_iterator())
[(array([1, 2, 3], dtype=int32), b'A')]
Note that if tensors
contains a NumPy array, and eager execution is not
enabled, the values will be embedded in the graph as one or more
tf.constant
operations. For large datasets (> 1 GB), this can waste
memory and run into byte limits of graph serialization. If tensors
contains one or more large NumPy arrays, consider the alternative described
in this
guide.
tensors
: A dataset element.Dataset
: A Dataset
.interleave
interleave(
map_func, cycle_length=-1, block_length=1, num_parallel_calls=None
)
Maps map_func
across this dataset, and interleaves the results.
For example, you can use Dataset.interleave()
to process many input files
concurrently:
>>> # Preprocess 4 files concurrently, and interleave blocks of 16 records
>>> # from each file.
>>> filenames = ["/var/data/file1.txt", "/var/data/file2.txt",
... "/var/data/file3.txt", "/var/data/file4.txt"]
>>> dataset = tf.data.Dataset.from_tensor_slices(filenames)
>>> def parse_fn(filename):
... return tf.data.Dataset.range(10)
>>> dataset = dataset.interleave(lambda x:
... tf.data.TextLineDataset(x).map(parse_fn, num_parallel_calls=1),
... cycle_length=4, block_length=16)
The cycle_length
and block_length
arguments control the order in which
elements are produced. cycle_length
controls the number of input elements
that are processed concurrently. If you set cycle_length
to 1, this
transformation will handle one input element at a time, and will produce
identical results to tf.data.Dataset.flat_map
. In general,
this transformation will apply map_func
to cycle_length
input elements,
open iterators on the returned Dataset
objects, and cycle through them
producing block_length
consecutive elements from each iterator, and
consuming the next input element each time it reaches the end of an
iterator.
>>> dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ]
>>> # NOTE: New lines indicate "block" boundaries.
>>> dataset = dataset.interleave(
... lambda x: Dataset.from_tensors(x).repeat(6),
... cycle_length=2, block_length=4)
>>> list(dataset.as_numpy_iterator())
[1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5]
NOTE: The order of elements yielded by this transformation is
deterministic, as long as map_func
is a pure function. If
map_func
contains any stateful operations, the order in which
that state is accessed is undefined.
map_func
: A function mapping a dataset element to a dataset.cycle_length
: (Optional.) The number of input elements that will be
processed concurrently. If not specified, the value will be derived from
the number of available CPU cores. If the num_parallel_calls
argument
is set to tf.data.experimental.AUTOTUNE
, the cycle_length
argument
also identifies the maximum degree of parallelism.block_length
: (Optional.) The number of consecutive elements to produce
from each input element before cycling to another input element.num_parallel_calls
: (Optional.) If specified, the implementation creates a
threadpool, which is used to fetch inputs from cycle elements
asynchronously and in parallel. The default behavior is to fetch inputs
from cycle elements synchronously with no parallelism. If the value
tf.data.experimental.AUTOTUNE
is used, then the number of parallel
calls is set dynamically based on available CPU.Dataset
: A Dataset
.list_files
@staticmethod
list_files(
file_pattern, shuffle=None, seed=None
)
A dataset of all files matching one or more glob patterns.
The file_pattern
argument should be a small number of glob patterns.
If your filenames have already been globbed, use
Dataset.from_tensor_slices(filenames)
instead, as re-globbing every
filename with list_files
may result in poor performance with remote
storage systems.
NOTE: The default behavior of this method is to return filenames in
a non-deterministic random shuffled order. Pass a seed
or shuffle=False
to get results in a deterministic order.
If we had the following files on our filesystem: - /path/to/dir/a.txt - /path/to/dir/b.py - /path/to/dir/c.py If we pass "/path/to/dir/*.py" as the directory, the dataset would produce: - /path/to/dir/b.py - /path/to/dir/c.py
file_pattern
: A string, a list of strings, or a tf.Tensor
of string type
(scalar or vector), representing the filename glob (i.e. shell wildcard)
pattern(s) that will be matched.shuffle
: (Optional.) If True
, the file names will be shuffled randomly.
Defaults to True
.seed
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the random
seed that will be used to create the distribution. See
tf.compat.v1.set_random_seed
for behavior.Dataset
: A Dataset
of strings corresponding to file names.make_initializable_iterator
make_initializable_iterator(
shared_name=None
)
Creates an Iterator
for enumerating the elements of this dataset. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use for ... in dataset:
to iterate over a dataset. If using tf.estimator
, return the Dataset
object directly from your input function. As a last resort, you can use tf.compat.v1.data.make_initializable_iterator(dataset)
.
Note: The returned iterator will be in an uninitialized state,
and you must run the iterator.initializer
operation before using it:
dataset = ...
iterator = dataset.make_initializable_iterator()
# ...
sess.run(iterator.initializer)
shared_name
: (Optional.) If non-empty, the returned iterator will be
shared under the given name across multiple sessions that share the same
devices (e.g. when using a remote server).An Iterator
over the elements of this dataset.
RuntimeError
: If eager execution is enabled.make_one_shot_iterator
make_one_shot_iterator()
Creates an Iterator
for enumerating the elements of this dataset. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version.
Instructions for updating:
Use for ... in dataset:
to iterate over a dataset. If using tf.estimator
, return the Dataset
object directly from your input function. As a last resort, you can use tf.compat.v1.data.make_one_shot_iterator(dataset)
.
Note: The returned iterator will be initialized automatically. A "one-shot" iterator does not currently support re-initialization.
An Iterator
over the elements of this dataset.
map
map(
map_func, num_parallel_calls=None
)
Maps map_func
across the elements of this dataset.
This transformation applies map_func
to each element of this dataset, and
returns a new dataset containing the transformed elements, in the same
order as they appeared in the input. map_func
can be used to change both
the values and the structure of a dataset's elements. For example, adding 1
to each element, or projecting a subset of element components.
>>> dataset = Dataset.range(1, 6) # ==> [ 1, 2, 3, 4, 5 ]
>>> dataset = dataset.map(lambda x: x + 1)
>>> list(dataset.as_numpy_iterator())
[2, 3, 4, 5, 6]
The input signature of map_func
is determined by the structure of each
element in this dataset.
>>> dataset = Dataset.range(5)
>>> # `map_func` takes a single argument of type `tf.Tensor` with the same
>>> # shape and dtype.
>>> result = dataset.map(lambda x: x + 1)
>>> # Each element is a tuple containing two `tf.Tensor` objects.
>>> elements = [(1, "foo"), (2, "bar"), (3, "baz)")]
>>> dataset = tf.data.Dataset.from_generator(
... lambda: elements, (tf.int32, tf.string))
>>> # `map_func` takes two arguments of type `tf.Tensor`. This function
>>> # projects out just the first component.
>>> result = dataset.map(lambda x_int, y_str: x_int)
>>> list(result.as_numpy_iterator())
[1, 2, 3]
>>> # Each element is a dictionary mapping strings to `tf.Tensor` objects.
>>> elements = ([{"a": 1, "b": "foo"},
... {"a": 2, "b": "bar"},
... {"a": 3, "b": "baz"}])
>>> dataset = tf.data.Dataset.from_generator(
... lambda: elements, {"a": tf.int32, "b": tf.string})
>>> # `map_func` takes a single argument of type `dict` with the same keys
>>> # as the elements.
>>> result = dataset.map(lambda d: str(d["a"]) + d["b"])
The value or values returned by map_func
determine the structure of each
element in the returned dataset.
>>> dataset = tf.data.Dataset.range(3)
>>> # `map_func` returns two `tf.Tensor` objects.
>>> def g(x):
... return tf.constant(37.0), tf.constant(["Foo", "Bar", "Baz"])
>>> result = dataset.map(g)
>>> result.element_spec
(TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(3,), dtype=tf.string, name=None))
>>> # Python primitives, lists, and NumPy arrays are implicitly converted to
>>> # `tf.Tensor`.
>>> def h(x):
... return 37.0, ["Foo", "Bar"], np.array([1.0, 2.0], dtype=np.float64)
>>> result = dataset.map(h)
>>> result.element_spec
(TensorSpec(shape=(), dtype=tf.float32, name=None), TensorSpec(shape=(2,), dtype=tf.string, name=None), TensorSpec(shape=(2,), dtype=tf.float64, name=None))
>>> # `map_func` can return nested structures.
>>> def i(x):
... return (37.0, [42, 16]), "foo"
>>> result = dataset.map(i)
>>> result.element_spec
((TensorSpec(shape=(), dtype=tf.float32, name=None),
TensorSpec(shape=(2,), dtype=tf.int32, name=None)),
TensorSpec(shape=(), dtype=tf.string, name=None))
map_func
can accept as arguments and return any type of dataset element.
Note that irrespective of the context in which map_func
is defined (eager
vs. graph), tf.data traces the function and executes it as a graph. To use
Python code inside of the function you have two options:
1) Rely on AutoGraph to convert Python code into an equivalent graph computation. The downside of this approach is that AutoGraph can convert some but not all Python code.
2) Use tf.py_function
, which allows you to write arbitrary Python code but
will generally result in worse performance than 1). For example:
>>> d = tf.data.Dataset.from_tensor_slices(['hello', 'world'])
>>> # transform a string tensor to upper case string using a Python function
>>> def upper_case_fn(t: tf.Tensor):
... return t.numpy().decode('utf-8').upper()
>>> d = d.map(lambda x: tf.py_function(func=upper_case_fn,
... inp=[x], Tout=tf.string))
>>> list(d.as_numpy_iterator())
[b'HELLO', b'WORLD']
map_func
: A function mapping a dataset element to another dataset element.num_parallel_calls
: (Optional.) A tf.int32
scalar tf.Tensor
,
representing the number elements to process asynchronously in parallel.
If not specified, elements will be processed sequentially. If the value
tf.data.experimental.AUTOTUNE
is used, then the number of parallel
calls is set dynamically based on available CPU.Dataset
: A Dataset
.map_with_legacy_function
map_with_legacy_function(
map_func, num_parallel_calls=None
)
Maps map_func
across the elements of this dataset. (deprecated)
Warning: THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use `tf.data.Dataset.map()
NOTE: This is an escape hatch for existing uses of map
that do not work
with V2 functions. New uses are strongly discouraged and existing uses
should migrate to map
as this method will be removed in V2.
map_func
: A function mapping a nested structure of tensors (having shapes
and types defined by self.output_shapes
and self.output_types
) to
another nested structure of tensors.num_parallel_calls
: (Optional.) A tf.int32
scalar tf.Tensor
,
representing the number elements to process asynchronously in parallel.
If not specified, elements will be processed sequentially. If the value
tf.data.experimental.AUTOTUNE
is used, then the number of parallel
calls is set dynamically based on available CPU.Dataset
: A Dataset
.options
options()
Returns the options for this dataset and its inputs.
A tf.data.Options
object representing the dataset options.
padded_batch
padded_batch(
batch_size, padded_shapes, padding_values=None, drop_remainder=False
)
Combines consecutive elements of this dataset into padded batches.
This transformation combines multiple consecutive elements of the input dataset into a single element.
Like tf.data.Dataset.batch
, the components of the resulting element will
have an additional outer dimension, which will be batch_size
(or
N % batch_size
for the last element if batch_size
does not divide the
number of input elements N
evenly and drop_remainder
is False
). If
your program depends on the batches having the same outer dimension, you
should set the drop_remainder
argument to True
to prevent the smaller
batch from being produced.
Unlike tf.data.Dataset.batch
, the input elements to be batched may have
different shapes, and this transformation will pad each component to the
respective shape in padding_shapes
. The padding_shapes
argument
determines the resulting shape for each dimension of each component in an
output element:
tf.compat.v1.Dimension(37)
), the
component will be padded out to that length in that dimension.tf.compat.v1.Dimension(None)
), the
component will be padded out to the maximum length of all elements in that
dimension.>>> elements = [[1, 2],
... [3, 4, 5],
... [6, 7],
... [8]]
>>> A = tf.data.Dataset.from_generator(lambda: iter(elements), tf.int32)
>>> # Pad to the smallest per-batch size that fits all elements.
>>> B = A.padded_batch(2, padded_shapes=[None])
>>> for element in B.as_numpy_iterator():
... print(element)
[[1 2 0]
[3 4 5]]
[[6 7]
[8 0]]
>>> # Pad to a fixed size.
>>> C = A.padded_batch(2, padded_shapes=3)
>>> for element in C.as_numpy_iterator():
... print(element)
[[1 2 0]
[3 4 5]]
[[6 7 0]
[8 0 0]]
>>> # Pad with a custom value.
>>> D = A.padded_batch(2, padded_shapes=3, padding_values=-1)
>>> for element in D.as_numpy_iterator():
... print(element)
[[ 1 2 -1]
[ 3 4 5]]
[[ 6 7 -1]
[ 8 -1 -1]]
>>> # Components of nested elements can be padded independently.
>>> elements = [([1, 2, 3], [10]),
... ([4, 5], [11, 12])]
>>> dataset = tf.data.Dataset.from_generator(
... lambda: iter(elements), (tf.int32, tf.int32))
>>> # Pad the first component of the tuple to length 4, and the second
>>> # component to the smallest size that fits.
>>> dataset = dataset.padded_batch(2,
... padded_shapes=([4], [None]),
... padding_values=(-1, 100))
>>> list(dataset.as_numpy_iterator())
[(array([[ 1, 2, 3, -1], [ 4, 5, -1, -1]], dtype=int32),
array([[ 10, 100], [ 11, 12]], dtype=int32))]
See also tf.data.experimental.dense_to_sparse_batch
, which combines
elements that may have different shapes into a tf.SparseTensor
.
batch_size
: A tf.int64
scalar tf.Tensor
, representing the number of
consecutive elements of this dataset to combine in a single batch.padded_shapes
: A nested structure of tf.TensorShape
or tf.int64
vector
tensor-like objects representing the shape to which the respective
component of each input element should be padded prior to batching. Any
unknown dimensions (e.g. tf.compat.v1.Dimension(None)
in a
tf.TensorShape
or -1
in a tensor-like object) will be padded to the
maximum size of that dimension in each batch.padding_values
: (Optional.) A nested structure of scalar-shaped
tf.Tensor
, representing the padding values to use for the respective
components. Defaults are 0
for numeric types and the empty string for
string types.drop_remainder
: (Optional.) A tf.bool
scalar tf.Tensor
, representing
whether the last batch should be dropped in the case it has fewer than
batch_size
elements; the default behavior is not to drop the smaller
batch.Dataset
: A Dataset
.prefetch
prefetch(
buffer_size
)
Creates a Dataset
that prefetches elements from this dataset.
Most dataset input pipelines should end with a call to prefetch
. This
allows later elements to be prepared while the current element is being
processed. This often improves latency and throughput, at the cost of
using additional memory to store prefetched elements.
Note: Like other Dataset
methods, prefetch operates on the
elements of the input dataset. It has no concept of examples vs. batches.
examples.prefetch(2)
will prefetch two elements (2 examples),
while examples.batch(20).prefetch(2)
will prefetch 2 elements
(2 batches, of 20 examples each).
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.prefetch(2)
>>> list(dataset.as_numpy_iterator())
[0, 1, 2]
buffer_size
: A tf.int64
scalar tf.Tensor
, representing the maximum
number of elements that will be buffered when prefetching.Dataset
: A Dataset
.range
@staticmethod
range(
*args
)
Creates a Dataset
of a step-separated range of values.
>>> list(Dataset.range(5).as_numpy_iterator())
[0, 1, 2, 3, 4]
>>> list(Dataset.range(2, 5).as_numpy_iterator())
[2, 3, 4]
>>> list(Dataset.range(1, 5, 2).as_numpy_iterator())
[1, 3]
>>> list(Dataset.range(1, 5, -2).as_numpy_iterator())
[]
>>> list(Dataset.range(5, 1).as_numpy_iterator())
[]
>>> list(Dataset.range(5, 1, -2).as_numpy_iterator())
[5, 3]
*args
: follows the same semantics as python's xrange.
len(args) == 1 -> start = 0, stop = args[0], step = 1
len(args) == 2 -> start = args[0], stop = args[1], step = 1
len(args) == 3 -> start = args[0], stop = args[1, stop = args[2]Dataset
: A RangeDataset
.ValueError
: if len(args) == 0.reduce
reduce(
initial_state, reduce_func
)
Reduces the input dataset to a single element.
The transformation calls reduce_func
successively on every element of
the input dataset until the dataset is exhausted, aggregating information in
its internal state. The initial_state
argument is used for the initial
state and the final state is returned as the result.
>>> tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, _: x + 1).numpy()
5
>>> tf.data.Dataset.range(5).reduce(np.int64(0), lambda x, y: x + y).numpy()
10
initial_state
: An element representing the initial state of the
transformation.reduce_func
: A function that maps (old_state, input_element)
to
new_state
. It must take two arguments and return a new element
The structure of new_state
must match the structure of
initial_state
.A dataset element corresponding to the final state of the transformation.
repeat
repeat(
count=None
)
Repeats this dataset so each original value is seen count
times.
>>> dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
>>> dataset = dataset.repeat(3)
>>> list(dataset.as_numpy_iterator())
[1, 2, 3, 1, 2, 3, 1, 2, 3]
NOTE: If this dataset is a function of global state (e.g. a random number generator), then different repetitions may produce different elements.
count
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the
number of times the dataset should be repeated. The default behavior (if
count
is None
or -1
) is for the dataset be repeated indefinitely.Dataset
: A Dataset
.shard
shard(
num_shards, index
)
Creates a Dataset
that includes only 1/num_shards
of this dataset.
shard
is deterministic. The Dataset produced by A.shard(n, i)
will
contain all elements of A whose index mod n = i.
>>> A = tf.data.Dataset.range(10)
>>> B = A.shard(num_shards=3, index=0)
>>> list(B.as_numpy_iterator())
[0, 3, 6, 9]
>>> C = A.shard(num_shards=3, index=1)
>>> list(C.as_numpy_iterator())
[1, 4, 7]
>>> D = A.shard(num_shards=3, index=2)
>>> list(D.as_numpy_iterator())
[2, 5, 8]
This dataset operator is very useful when running distributed training, as it allows each worker to read a unique subset.
When reading a single input file, you can shard elements as follows:
d = tf.data.TFRecordDataset(input_file)
d = d.shard(num_workers, worker_index)
d = d.repeat(num_epochs)
d = d.shuffle(shuffle_buffer_size)
d = d.map(parser_fn, num_parallel_calls=num_map_threads)
d = Dataset.list_files(pattern)
d = d.shard(num_workers, worker_index)
d = d.repeat(num_epochs)
d = d.shuffle(shuffle_buffer_size)
d = d.interleave(tf.data.TFRecordDataset,
cycle_length=num_readers, block_length=1)
d = d.map(parser_fn, num_parallel_calls=num_map_threads)
num_shards
: A tf.int64
scalar tf.Tensor
, representing the number of
shards operating in parallel.index
: A tf.int64
scalar tf.Tensor
, representing the worker index.Dataset
: A Dataset
.InvalidArgumentError
: if num_shards
or index
are illegal values.
Note: error checking is done on a best-effort basis, and errors aren't
guaranteed to be caught upon dataset creation. (e.g. providing in a
placeholder tensor bypasses the early checking, and will instead result
in an error during a session.run call.)shuffle
shuffle(
buffer_size, seed=None, reshuffle_each_iteration=None
)
Randomly shuffles the elements of this dataset.
This dataset fills a buffer with buffer_size
elements, then randomly
samples elements from this buffer, replacing the selected elements with new
elements. For perfect shuffling, a buffer size greater than or equal to the
full size of the dataset is required.
For instance, if your dataset contains 10,000 elements but buffer_size
is
set to 1,000, then shuffle
will initially select a random element from
only the first 1,000 elements in the buffer. Once an element is selected,
its space in the buffer is replaced by the next (i.e. 1,001-st) element,
maintaining the 1,000 element buffer.
reshuffle_each_iteration
controls whether the shuffle order should be
different for each epoch. In TF 1.X, the idiomatic way to create epochs
was through the repeat
transformation:
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=True)
>>> dataset = dataset.repeat(2) # doctest: +SKIP
[1, 0, 2, 1, 2, 0]
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=False)
>>> dataset = dataset.repeat(2) # doctest: +SKIP
[1, 0, 2, 1, 0, 2]
In TF 2.0, tf.data.Dataset
objects are Python iterables which makes it
possible to also create epochs through Python iteration:
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=True)
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 0, 2]
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 2, 0]
>>> dataset = tf.data.Dataset.range(3)
>>> dataset = dataset.shuffle(3, reshuffle_each_iteration=False)
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 0, 2]
>>> list(dataset.as_numpy_iterator()) # doctest: +SKIP
[1, 0, 2]
buffer_size
: A tf.int64
scalar tf.Tensor
, representing the number of
elements from this dataset from which the new dataset will sample.seed
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the random
seed that will be used to create the distribution. See
tf.compat.v1.set_random_seed
for behavior.reshuffle_each_iteration
: (Optional.) A boolean, which if true indicates
that the dataset should be pseudorandomly reshuffled each time it is
iterated over. (Defaults to True
.)Dataset
: A Dataset
.skip
skip(
count
)
Creates a Dataset
that skips count
elements from this dataset.
>>> dataset = tf.data.Dataset.range(10)
>>> dataset = dataset.skip(7)
>>> list(dataset.as_numpy_iterator())
[7, 8, 9]
count
: A tf.int64
scalar tf.Tensor
, representing the number of
elements of this dataset that should be skipped to form the new dataset.
If count
is greater than the size of this dataset, the new dataset
will contain no elements. If count
is -1, skips the entire dataset.Dataset
: A Dataset
.take
take(
count
)
Creates a Dataset
with at most count
elements from this dataset.
>>> dataset = tf.data.Dataset.range(10)
>>> dataset = dataset.take(3)
>>> list(dataset.as_numpy_iterator())
[0, 1, 2]
count
: A tf.int64
scalar tf.Tensor
, representing the number of
elements of this dataset that should be taken to form the new dataset.
If count
is -1, or if count
is greater than the size of this
dataset, the new dataset will contain all elements of this dataset.Dataset
: A Dataset
.unbatch
unbatch()
Splits elements of a dataset into multiple elements.
For example, if elements of the dataset are shaped [B, a0, a1, ...]
,
where B
may vary for each input element, then for each element in the
dataset, the unbatched dataset will contain B
consecutive elements
of shape [a0, a1, ...]
.
>>> elements = [ [1, 2, 3], [1, 2], [1, 2, 3, 4] ]
>>> dataset = tf.data.Dataset.from_generator(lambda: elements, tf.int64)
>>> dataset = dataset.unbatch()
>>> list(dataset.as_numpy_iterator())
[1, 2, 3, 1, 2, 1, 2, 3, 4]
A Dataset
transformation function, which can be passed to
tf.data.Dataset.apply
.
window
window(
size, shift=None, stride=1, drop_remainder=False
)
Combines (nests of) input elements into a dataset of (nests of) windows.
A "window" is a finite dataset of flat elements of size size
(or possibly
fewer if there are not enough input elements to fill the window and
drop_remainder
evaluates to false).
The stride
argument determines the stride of the input elements, and the
shift
argument determines the shift of the window.
>>> dataset = tf.data.Dataset.range(7).window(2)
>>> for window in dataset:
... print(list(window.as_numpy_iterator()))
[0, 1]
[2, 3]
[4, 5]
[6]
>>> dataset = tf.data.Dataset.range(7).window(3, 2, 1, True)
>>> for window in dataset:
... print(list(window.as_numpy_iterator()))
[0, 1, 2]
[2, 3, 4]
[4, 5, 6]
>>> dataset = tf.data.Dataset.range(7).window(3, 1, 2, True)
>>> for window in dataset:
... print(list(window.as_numpy_iterator()))
[0, 2, 4]
[1, 3, 5]
[2, 4, 6]
Note that when the window
transformation is applied to a dataset of
nested elements, it produces a dataset of nested windows.
>>> nested = ([1, 2, 3, 4], [5, 6, 7, 8])
>>> dataset = tf.data.Dataset.from_tensor_slices(nested).window(2)
>>> for window in dataset:
... def to_numpy(ds):
... return list(ds.as_numpy_iterator())
... print(tuple(to_numpy(component) for component in window))
([1, 2], [5, 6])
([3, 4], [7, 8])
>>> dataset = tf.data.Dataset.from_tensor_slices({'a': [1, 2, 3, 4]})
>>> dataset = dataset.window(2)
>>> for window in dataset:
... def to_numpy(ds):
... return list(ds.as_numpy_iterator())
... print({'a': to_numpy(window['a'])})
{'a': [1, 2]}
{'a': [3, 4]}
size
: A tf.int64
scalar tf.Tensor
, representing the number of elements
of the input dataset to combine into a window.shift
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the
forward shift of the sliding window in each iteration. Defaults to
size
.stride
: (Optional.) A tf.int64
scalar tf.Tensor
, representing the
stride of the input elements in the sliding window.drop_remainder
: (Optional.) A tf.bool
scalar tf.Tensor
, representing
whether a window should be dropped in case its size is smaller than
window_size
.Dataset
: A Dataset
of (nests of) windows -- a finite datasets of flat
elements created from the (nests of) input elements.with_options
with_options(
options
)
Returns a new tf.data.Dataset
with the given options set.
The options are "global" in the sense they apply to the entire dataset. If options are set multiple times, they are merged as long as different options do not use different non-default values.
>>> ds = tf.data.Dataset.range(5)
>>> ds = ds.interleave(lambda x: tf.data.Dataset.range(5),
... cycle_length=3,
... num_parallel_calls=3)
>>> options = tf.data.Options()
>>> # This will make the interleave order non-deterministic.
>>> options.experimental_deterministic = False
>>> ds = ds.with_options(options)
options
: A tf.data.Options
that identifies the options the use.Dataset
: A Dataset
with the given options.ValueError
: when an option is set more than once to a non-default valuezip
@staticmethod
zip(
datasets
)
Creates a Dataset
by zipping together the given datasets.
This method has similar semantics to the built-in zip()
function
in Python, with the main difference being that the datasets
argument can be an arbitrary nested structure of Dataset
objects.
>>> # The nested structure of the `datasets` argument determines the
>>> # structure of elements in the resulting dataset.
>>> a = tf.data.Dataset.range(1, 4) # ==> [ 1, 2, 3 ]
>>> b = tf.data.Dataset.range(4, 7) # ==> [ 4, 5, 6 ]
>>> ds = tf.data.Dataset.zip((a, b))
>>> list(ds.as_numpy_iterator())
[(1, 4), (2, 5), (3, 6)]
>>> ds = tf.data.Dataset.zip((b, a))
>>> list(ds.as_numpy_iterator())
[(4, 1), (5, 2), (6, 3)]
>>>
>>> # The `datasets` argument may contain an arbitrary number of datasets.
>>> c = tf.data.Dataset.range(7, 13).batch(2) # ==> [ [7, 8],
... # [9, 10],
... # [11, 12] ]
>>> ds = tf.data.Dataset.zip((a, b, c))
>>> for element in ds.as_numpy_iterator():
... print(element)
(1, 4, array([7, 8]))
(2, 5, array([ 9, 10]))
(3, 6, array([11, 12]))
>>>
>>> # The number of elements in the resulting dataset is the same as
>>> # the size of the smallest dataset in `datasets`.
>>> d = tf.data.Dataset.range(13, 15) # ==> [ 13, 14 ]
>>> ds = tf.data.Dataset.zip((a, d))
>>> list(ds.as_numpy_iterator())
[(1, 13), (2, 14)]
datasets
: A nested structure of datasets.Dataset
: A Dataset
.