librosa.core.istft¶
-
librosa.core.
istft
(stft_matrix, hop_length=None, win_length=None, window=’hann’, center=True, dtype=<class ‘numpy.float32’>, length=None)[source]¶ Inverse short-time Fourier transform (ISTFT).
Converts a complex-valued spectrogram stft_matrix to time-series y by minimizing the mean squared error between stft_matrix and STFT of y as described in [1].
In general, window function, hop length and other parameters should be same as in stft, which mostly leads to perfect reconstruction of a signal from unmodified stft_matrix.
[1] D. W. Griffin and J. S. Lim, “Signal estimation from modified short-time Fourier transform,” IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. Parameters: - stft_matrix : np.ndarray [shape=(1 + n_fft/2, t)]
STFT matrix from
stft
- hop_length : int > 0 [scalar]
Number of frames between STFT columns. If unspecified, defaults to win_length / 4.
- win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1)
When reconstructing the time series, each frame is windowed and each sample is normalized by the sum of squared window according to the window function (see below).
If unspecified, defaults to n_fft.
- window : string, tuple, number, function, np.ndarray [shape=(n_fft,)]
- a window specification (string, tuple, or number);
see
scipy.signal.get_window
- a window function, such as
scipy.signal.hanning
- a user-specified window vector of length n_fft
- a window specification (string, tuple, or number);
see
- center : boolean
- If True, D is assumed to have centered frames.
- If False, D is assumed to have left-aligned frames.
- dtype : numeric type
Real numeric type for y. Default is 32-bit float.
- length : int > 0, optional
If provided, the output y is zero-padded or clipped to exactly length samples.
Returns: - y : np.ndarray [shape=(n,)]
time domain signal reconstructed from stft_matrix
See also
stft
- Short-time Fourier Transform
Notes
This function caches at level 30.
Examples
>>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> D = librosa.stft(y) >>> y_hat = librosa.istft(D) >>> y_hat array([ -4.812e-06, -4.267e-06, ..., 6.271e-06, 2.827e-07], dtype=float32)
Exactly preserving length of the input signal requires explicit padding. Otherwise, a partial frame at the end of y will not be represented.
>>> n = len(y) >>> n_fft = 2048 >>> y_pad = librosa.util.fix_length(y, n + n_fft // 2) >>> D = librosa.stft(y_pad, n_fft=n_fft) >>> y_out = librosa.istft(D, length=n) >>> np.max(np.abs(y - y_out)) 1.4901161e-07