std::mismatch
Defined in header
<algorithm>
|
||
template< class InputIt1, class InputIt2 >
std::pair<InputIt1,InputIt2> |
(1) | |
template< class ExecutionPolicy, class InputIt1, class InputIt2 >
std::pair<InputIt1,InputIt2> |
(2) | (since C++17) |
template< class InputIt1, class InputIt2, class BinaryPredicate >
std::pair<InputIt1,InputIt2> |
(3) | |
template< class ExecutionPolicy, class InputIt1, class InputIt2, class BinaryPredicate >
std::pair<InputIt1,InputIt2> |
(4) | (since C++17) |
template< class InputIt1, class InputIt2 >
std::pair<InputIt1,InputIt2> |
(5) | (since C++14) |
template< class ExecutionPolicy, class InputIt1, class InputIt2 >
std::pair<InputIt1,InputIt2> |
(6) | (since C++17) |
template< class InputIt1, class InputIt2, class BinaryPredicate >
std::pair<InputIt1,InputIt2> |
(7) | (since C++14) |
template< class ExecutionPolicy, class InputIt1, class InputIt2, class BinaryPredicate >
std::pair<InputIt1,InputIt2> |
(8) | (since C++17) |
Returns the first mismatching pair of elements from two ranges: one defined by [first1, last1)
and another defined by [first2,last2)
. If last2
is not provided (overloads (1-4)), it denotes first2 + (last1 - first1)
.
operator==
.p
.policy
. These overloads do not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true
Contents |
[edit] Parameters
first1, last1 | - | the first range of the elements |
first2, last2 | - | the second range of the elements |
policy | - | the execution policy to use. See execution policy for details. |
p | - | binary predicate which returns true if the elements should be treated as equal. The signature of the predicate function should be equivalent to the following: bool pred(const Type1 &a, const Type2 &b); The signature does not need to have const &, but the function must not modify the objects passed to it. |
Type requirements | ||
-
InputIt1 must meet the requirements of InputIterator .
|
||
-
InputIt2 must meet the requirements of InputIterator .
|
||
-
BinaryPredicate must meet the requirements of BinaryPredicate .
|
[edit] Return value
std::pair with iterators to the first two non-equivalent elements.
If no mismatches are found when the comparison reaches last1 , the pair holds last1 and the corresponding iterator from the second range. The behavior is undefined if the second range is shorter than the first range.
|
(until C++14) |
If no mismatches are found when the comparison reaches last1 or last2 , whichever happens first, the pair holds the end iterator and the corresponding iterator from the other range.
|
(since C++14) |
[edit] Complexity
last1
- first1
applications of operator==
or the predicate p
last1
- first1
, last2
- first2
) applications of operator==
or the predicate p
.[edit] Exceptions
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception,
-
- if
policy
is std::parallel_vector_execution_policy, std::terminate is called - if
policy
is std::sequential_execution_policy or std::parallel_execution_policy, the algorithm exits with an std::exception_list containing all uncaught exceptions. If there was only one uncaught exception, the algorithm may rethrow it without wrapping in std::exception_list. It is unspecified how much work the algorithm will perform before returning after the first exception was encountered. - if
policy
is some other type, the behavior is implementation-defined
- if
- If the algorithm fails to allocate memory (either for itself or to construct an std::exception_list when handling a user exception), std::bad_alloc is thrown.
[edit] Possible implementation
First version |
---|
template<class InputIt1, class InputIt2> std::pair<InputIt1, InputIt2> mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2) { while (first1 != last1 && *first1 == *first2) { ++first1, ++first2; } return std::make_pair(first1, first2); } |
Second version |
template<class InputIt1, class InputIt2, class BinaryPredicate> std::pair<InputIt1, InputIt2> mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2, BinaryPredicate p) { while (first1 != last1 && p(*first1, *first2)) { ++first1, ++first2; } return std::make_pair(first1, first2); } |
Third version |
template<class InputIt1, class InputIt2> std::pair<InputIt1, InputIt2> mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2) { while (first1 != last1 && first2 != last2 && *first1 == *first2) { ++first1, ++first2; } return std::make_pair(first1, first2); } |
Fourth version |
template<class InputIt1, class InputIt2, class BinaryPredicate> std::pair<InputIt1, InputIt2> mismatch(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, BinaryPredicate p) { while (first1 != last1 && first2 != last2 && p(*first1, *first2)) { ++first1, ++first2; } return std::make_pair(first1, first2); } |
[edit] Example
This program determines the longest substring that is simultaneously found at the very beginning of the given string and at the very end of it, in reverse order (possibly overlapping)
#include <iostream> #include <string> #include <algorithm> std::string mirror_ends(const std::string& in) { return std::string(in.begin(), std::mismatch(in.begin(), in.end(), in.rbegin()).first); } int main() { std::cout << mirror_ends("abXYZba") << '\n' << mirror_ends("abca") << '\n' << mirror_ends("aba") << '\n'; }
Output:
ab a aba
[edit] See also
determines if two sets of elements are the same (function template) |
|
(C++11)
|
finds the first element satisfying specific criteria (function template) |
returns true if one range is lexicographically less than another (function template) |
|
searches for a range of elements (function template) |
|
(parallelism TS)
|
parallelized version of std::mismatch (function template) |