std::partition
From cppreference.com
Defined in header
<algorithm>
|
||
(1) | ||
template< class BidirIt, class UnaryPredicate >
BidirIt partition( BidirIt first, BidirIt last, UnaryPredicate p ); |
(until C++11) | |
template< class ForwardIt, class UnaryPredicate >
ForwardIt partition( ForwardIt first, ForwardIt last, UnaryPredicate p ); |
(since C++11) | |
template< class ExecutionPolicy, class ForwardIt, class UnaryPredicate >
ForwardIt partition( ExecutionPolicy&& policy, ForwardIt first, ForwardIt last, UnaryPredicate p ); |
(2) | (since C++17) |
1) Reorders the elements in the range
[first, last)
in such a way that all elements for which the predicate p
returns true precede the elements for which predicate p
returns false. Relative order of the elements is not preserved.
2) Same as (1), but executed according to
policy
. This overload does not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true
Contents |
[edit] Parameters
first, last | - | the range of elements to reorder |
policy | - | the execution policy to use. See execution policy for details. |
p | - | unary predicate which returns true if the element should be ordered before other elements. The signature of the predicate function should be equivalent to the following: bool pred(const Type &a); The signature does not need to have const &, but the function must not modify the objects passed to it. |
Type requirements | ||
-
BidirIt must meet the requirements of BidirectionalIterator .
|
||
-
ForwardIt must meet the requirements of ValueSwappable and ForwardIterator . However, the operation is more efficient if ForwardIt also satisfies the requirements of BidirectionalIterator
|
||
-
UnaryPredicate must meet the requirements of Predicate .
|
[edit] Return value
Iterator to the first element of the second group.
[edit] Complexity
Exactly std::distance(first,last) applications of the predicate and at most std::distance(first,last) swaps. If ForwardIt
meets the requirements of BidirectionalIterator
at most std::distance(first,last)/2 swaps are done.
[edit] Exceptions
The overload with a template parameter named ExecutionPolicy
reports errors as follows:
- If execution of a function invoked as part of the algorithm throws an exception,
-
- if
policy
is std::parallel_vector_execution_policy, std::terminate is called - if
policy
is std::sequential_execution_policy or std::parallel_execution_policy, the algorithm exits with an std::exception_list containing all uncaught exceptions. If there was only one uncaught exception, the algorithm may rethrow it without wrapping in std::exception_list. It is unspecified how much work the algorithm will perform before returning after the first exception was encountered. - if
policy
is some other type, the behavior is implementation-defined
- if
- If the algorithm fails to allocate memory (either for itself or to construct an std::exception_list when handling a user exception), std::bad_alloc is thrown.
[edit] Possible implementation
template<class ForwardIt, class UnaryPredicate> ForwardIt partition(ForwardIt first, ForwardIt last, UnaryPredicate p) { first = std::find_if_not(first, last, p); if (first == last) return first; for(ForwardIt i = std::next(first); i != last; ++i){ if(p(*i)){ std::iter_swap(i, first); ++first; } } return first; } |
[edit] Example
Run this code
#include <algorithm> #include <iostream> #include <iterator> #include <vector> #include <forward_list> template <class ForwardIt> void quicksort(ForwardIt first, ForwardIt last) { if(first == last) return; auto pivot = *std::next(first, std::distance(first,last)/2); ForwardIt middle1 = std::partition(first, last, [pivot](const auto& em){ return em < pivot; }); ForwardIt middle2 = std::partition(middle1, last, [pivot](const auto& em){ return !(pivot < em); }); quicksort(first, middle1); quicksort(middle2, last); } int main() { std::vector<int> v = {0,1,2,3,4,5,6,7,8,9}; std::cout << "Original vector:\n "; for (int elem : v) std::cout << elem << ' '; auto it = std::partition(v.begin(), v.end(), [](int i){return i % 2 == 0;}); std::cout << "\nPartitioned vector:\n "; std::copy(std::begin(v), it, std::ostream_iterator<int>(std::cout, " ")); std::cout << " * "; std::copy(it, std::end(v), std::ostream_iterator<int>(std::cout, " ")); std::forward_list<int> fl = {1, 30, -4, 3, 5, -4, 1, 6, -8, 2, -5, 64, 1, 92}; std::cout << "\nUnsorted list:\n "; for(int n : fl) std::cout << n << ' '; std::cout << '\n'; quicksort(std::begin(fl), std::end(fl)); std::cout << "Sorted using quicksort:\n "; for(int fi : fl) std::cout << fi << ' '; std::cout << '\n'; }
Output:
Original vector: 0 1 2 3 4 5 6 7 8 9 Partitioned vector: 0 8 2 6 4 * 5 3 7 1 9 Unsorted list: 1 30 -4 3 5 -4 1 6 -8 2 -5 64 1 92 Sorted using quicksort: -8 -5 -4 -4 1 1 1 2 3 5 6 30 64 92
[edit] See also
(C++11)
|
determines if the range is partitioned by the given predicate (function template) |
divides elements into two groups while preserving their relative order (function template) |
|
(parallelism TS)
|
parallelized version of std::partition (function template) |