std::for_each_n

From cppreference.com
< cpp‎ | algorithm
 
 
Algorithm library
Execution policies (C++17)
Non-modifying sequence operations
(C++11)(C++11)(C++11)
for_each_n
(C++17)
Modifying sequence operations
(C++11)
(C++11)
(C++11)
(C++11)

Operations on uninitialized storage
Partitioning operations
Sorting operations
(C++11)
(C++11)
Binary search operations
Set operations (on sorted ranges)
Heap operations
(C++11)
(C++11)
Minimum/maximum operations
(C++11)
(C++11)
(C++17)

Permutations
(C++11)
Numeric operations
C library
 
Defined in header <algorithm>
template< class InputIt, class Size, class UnaryFunction >
InputIt for_each( InputIt first, Size n, UnaryFunction f );
(1) (since C++17)
template< class ExecutionPolicy, class InputIt, class Size, class UnaryFunction2 >
InputIt for_each_n( ExecutionPolicy&& policy, InputIt first, Size n, UnaryFunction2 f );
(2) (since C++17)
1) Applies the given function object f to the result of dereferencing every iterator in the range [first, first + n), in order.
2) Applies the given function object f to the result of dereferencing every iterator in the range [first, first + n) (not necessarily in order). The algorithm is executed according to policy. This overload does not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true.

For both overloads, if InputIt is a mutable iterator, f may modify the elements of the range through the dereferenced iterator. If f returns a result, the result is ignored. If n is less than zero, the behavior is undefined.

Contents

[edit] Parameters

first - the beginning of the range to apply the function to
n - the number of elements to apply the function to
policy - the execution policy to use. See execution policy for details.
f - function object, to be applied to the result of dereferencing every iterator in the range [first, first + n)

The signature of the function should be equivalent to the following:

 void fun(const Type &a);

The signature does not need to have const &.
The type Type must be such that an object of type InputIt can be dereferenced and then implicitly converted to Type.

Type requirements
-
InputIt must meet the requirements of InputIterator.
-
UnaryFunction must meet the requirements of MoveConstructible. Does not have to be CopyConstructible
-
UnaryFunction2 must meet the requirements of CopyConstructible.

[edit] Return value

first + n

[edit] Complexity

Exactly n applications of f

[edit] Exceptions

The overload with a template parameter named ExecutionPolicy reports errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception,
  • if policy is std::parallel_vector_execution_policy, std::terminate is called
  • if policy is std::sequential_execution_policy or std::parallel_execution_policy, the algorithm exits with an std::exception_list containing all uncaught exceptions. If there was only one uncaught exception, the algorithm may rethrow it without wrapping in std::exception_list. It is unspecified how much work the algorithm will perform before returning after the first exception was encountered.
  • if policy is some other type, the behavior is implementation-defined
  • If the algorithm fails to allocate memory (either for itself or to construct an std::exception_list when handling a user exception), std::bad_alloc is thrown.

[edit] Possible implementation

template<class InputIt, class Size, class UnaryFunction>
InputIt for_each_n(InputIt first, Size n, UnaryFunction f)
{
    for (Size i = 0; i < n; ++first, (void) ++i) {
        f(*first);
    }
    return first;
}

[edit] Example

[edit] See also

applies a function to a range of elements
(function template)
range-for loop executes loop over range (since C++11)
applies a function to a range of elements
(function template)