46 #define MAX_CHANNELS 63 49 #define PRE_B0 1.53512485958697 50 #define PRE_B1 -2.69169618940638 51 #define PRE_B2 1.19839281085285 52 #define PRE_A1 -1.69065929318241 53 #define PRE_A2 0.73248077421585 59 #define RLB_A1 -1.99004745483398 60 #define RLB_A2 0.99007225036621 63 #define ABS_UP_THRES 10
64 #define HIST_GRAIN 100
65 #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
101 #if CONFIG_SWRESAMPLE 130 #define I400_BINS (48000 * 4 / 10) 131 #define I3000_BINS (48000 * 3) 153 #define OFFSET(x) offsetof(EBUR128Context, x) 154 #define A AV_OPT_FLAG_AUDIO_PARAM 155 #define V AV_OPT_FLAG_VIDEO_PARAM 156 #define F AV_OPT_FLAG_FILTERING_PARAM 161 {
"framelog",
"force frame logging level",
OFFSET(loglevel),
AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX,
A|
V|
F,
"level" },
170 {
"panlaw",
"set a specific pan law for dual-mono files",
OFFSET(pan_law),
AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0,
A|
F },
189 const int below0 = y > ebur128->
y_zero_lu;
190 const int reached = y >= v;
192 const int colorid = 4*line + 2*reached + below0;
198 v += 2 * ebur128->
meter;
228 for (i = 0; buf[i]; i++) {
232 for (char_y = 0; char_y < font_height; char_y++) {
233 for (mask = 0x80;
mask; mask >>= 1) {
234 if (font[buf[i] * font_height + char_y] & mask)
237 memcpy(p,
"\x00\x00\x00", 3);
250 for (i = 0; i <
len; i++) {
251 memcpy(p,
"\x00\xff\x00", 3);
265 if (ebur128->
w < 640 || ebur128->
h < 480) {
267 "minimum size is 640x480\n", ebur128->
w, ebur128->
h);
270 outlink->
w = ebur128->
w;
271 outlink->
h = ebur128->
h;
278 ebur128->
text.
y = 40;
279 ebur128->
text.
w = 3 * 8;
311 memset(outpicref->
data[0], 0, ebur128->
h * outpicref->
linesize[0]);
315 for (i = ebur128->
meter; i >= -ebur128->
meter * 2; i--) {
317 x =
PAD + (i < 10 && i > -10) * 8;
321 "%c%d", i < 0 ? '-' : i > 0 ?
'+' :
' ',
FFABS(i));
328 for (y = 0; y < ebur128->
graph.
h; y++) {
331 for (x = 0; x < ebur128->
graph.
w; x++)
332 memcpy(p + x*3, c, 3);
337 #define DRAW_RECT(r) do { \ 338 drawline(outpicref, r.x, r.y - 1, r.w, 3); \ 339 drawline(outpicref, r.x, r.y + r.h, r.w, 3); \ 340 drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \ 341 drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \ 374 #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \ 375 AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \ 376 AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \ 377 AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT) 405 #if CONFIG_SWRESAMPLE 409 ebur128->swr_buf =
av_malloc_array(nb_channels, 19200 *
sizeof(
double));
413 if (!ebur128->swr_buf || !ebur128->
true_peaks ||
440 #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.)) 441 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy)) 442 #define DBFS(energy) (20 * log10(energy)) 473 "True-peak mode requires libswresample to be performed\n");
515 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN) 523 double relative_threshold;
534 if (!relative_threshold)
535 relative_threshold = 1e-12;
539 return gate_hist_pos;
544 int i,
ch, idx_insample;
549 const double *samples = (
double *)insamples->
data[0];
554 const double *swr_samples = ebur128->swr_buf;
561 for (idx_insample = 0; idx_insample < ret; idx_insample++) {
572 for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
576 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \ 577 ebur128->i##time.cache_pos++; \ 578 if (ebur128->i##time.cache_pos == I##time##_BINS) { \ 579 ebur128->i##time.filled = 1; \ 580 ebur128->i##time.cache_pos = 0; \ 593 ebur128->
x[ch * 3] = *samples++;
599 #define FILTER(Y, X, name) do { \ 600 double *dst = ebur128->Y + ch*3; \ 601 double *src = ebur128->X + ch*3; \ 604 dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2 \ 605 - dst[1]*name##_A1 - dst[2]*name##_A2; \ 610 ebur128->
x[ch * 3 + 2] = ebur128->
x[ch * 3 + 1];
611 ebur128->
x[ch * 3 + 1] = ebur128->
x[ch * 3 ];
614 bin = ebur128->
z[ch * 3] * ebur128->
z[ch * 3];
630 double loudness_400, loudness_3000;
631 double power_400 = 1e-12, power_3000 = 1e-12;
633 const int64_t
pts = insamples->
pts +
639 #define COMPUTE_LOUDNESS(m, time) do { \ 640 if (ebur128->i##time.filled) { \ 642 for (ch = 0; ch < nb_channels; ch++) \ 643 power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \ 644 power_##time /= I##time##_BINS; \ 646 loudness_##time = LOUDNESS(power_##time); \ 653 #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard 656 double integrated_sum = 0;
657 int nb_integrated = 0;
663 for (i = gate_hist_pos; i <
HIST_SIZE; i++) {
665 nb_integrated += nb_v;
671 if (nb_channels == 1 && ebur128->
dual_mono) {
678 #define LRA_GATE_THRES -20 679 #define LRA_LOWER_PRC 10 680 #define LRA_HIGHER_PRC 95 689 for (i = gate_hist_pos; i <
HIST_SIZE; i++)
697 for (i = gate_hist_pos; i <
HIST_SIZE; i++) {
708 for (i = HIST_SIZE - 1; i >= 0; i--) {
722 if (nb_channels == 1 && ebur128->
dual_mono) {
723 loudness_400 -= ebur128->
pan_law;
724 loudness_3000 -= ebur128->
pan_law;
727 #define LOG_FMT "M:%6.1f S:%6.1f I:%6.1f LUFS LRA:%6.1f LU" 734 const int y_loudness_lu_graph =
lu_to_y(ebur128, loudness_3000 + 23);
735 const int y_loudness_lu_gauge =
lu_to_y(ebur128, loudness_400 + 23);
738 p = pic->data[0] + ebur128->
graph.
y*pic->linesize[0] + ebur128->
graph.
x*3;
739 for (y = 0; y < ebur128->
graph.
h; y++) {
742 memmove(p, p + 3, (ebur128->
graph.
w - 1) * 3);
743 memcpy(p + (ebur128->
graph.
w - 1) * 3, c, 3);
744 p += pic->linesize[0];
748 p = pic->data[0] + ebur128->
gauge.
y*pic->linesize[0] + ebur128->
gauge.
x*3;
749 for (y = 0; y < ebur128->
gauge.
h; y++) {
752 for (x = 0; x < ebur128->
gauge.
w; x++)
753 memcpy(p + x*3, c, 3);
754 p += pic->linesize[0];
760 loudness_400, loudness_3000,
772 #define META_PREFIX "lavfi.r128." 774 #define SET_META(name, var) do { \ 775 snprintf(metabuf, sizeof(metabuf), "%.3f", var); \ 776 av_dict_set(&insamples->metadata, name, metabuf, 0); \ 779 #define SET_META_PEAK(name, ptype) do { \ 780 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ 782 for (ch = 0; ch < nb_channels; ch++) { \ 783 snprintf(key, sizeof(key), \ 784 META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \ 785 SET_META(key, ebur128->name##_peaks[ch]); \ 803 loudness_400, loudness_3000,
806 #define PRINT_PEAKS(str, sp, ptype) do { \ 807 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ 808 av_log(ctx, ebur128->loglevel, " " str ":"); \ 809 for (ch = 0; ch < nb_channels; ch++) \ 810 av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \ 811 av_log(ctx, ebur128->loglevel, " dBFS"); \ 835 static const int input_srate[] = {48000, -1};
881 " Integrated loudness:\n" 883 " Threshold: %5.1f LUFS\n\n" 886 " Threshold: %5.1f LUFS\n" 887 " LRA low: %5.1f LUFS\n" 888 " LRA high: %5.1f LUFS",
893 #define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \ 897 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \ 898 for (ch = 0; ch < ebur128->nb_channels; ch++) \ 899 maxpeak = FFMAX(maxpeak, sp[ch]); \ 900 av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \ 901 " Peak: %5.1f dBFS", \ 924 #if CONFIG_SWRESAMPLE 949 .priv_class = &ebur128_class,
static struct hist_entry * get_histogram(void)
This structure describes decoded (raw) audio or video data.
int scale_range
the range of LU values according to the meter
static int query_formats(AVFilterContext *ctx)
double * true_peaks_per_frame
true peaks in a frame per channel
struct hist_entry * histogram
histogram of the powers, used to compute LRA and I
static int config_video_output(AVFilterLink *outlink)
int sample_count
sample count used for refresh frequency, reset at refresh
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
int y_zero_lu
the y value (pixel position) for 0 LU
int max_samples
Maximum number of samples to filter at once.
static int config_audio_output(AVFilterLink *outlink)
int h
agreed upon image height
static int lu_to_y(const EBUR128Context *ebur128, double v)
#define COMPUTE_LOUDNESS(m, time)
static av_cold int init(AVFilterContext *ctx)
int cache_pos
focus on the last added bin in the cache array
#define SET_META_PEAK(name, ptype)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
#define AV_CH_LOW_FREQUENCY_2
const uint8_t avpriv_vga16_font[4096]
int do_video
1 if video output enabled, 0 otherwise
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static const AVOption ebur128_options[]
struct AVFilterChannelLayouts * in_channel_layouts
#define PRINT_PEAKS(str, sp, ptype)
int nb_channels
number of channels in the input
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
AVFILTER_DEFINE_CLASS(ebur128)
int metadata
whether or not to inject loudness results in frames
const char * name
Pad name.
AVFilterLink ** inputs
array of pointers to input links
#define av_assert0(cond)
assert() equivalent, that is always enabled.
#define HIST_GRAIN
defines histogram precision
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
AVFilterPad * output_pads
array of output pads
av_cold struct SwrContext * swr_alloc(void)
Allocate SwrContext.
static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt,...)
static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
double sum_kept_powers
sum of the powers (weighted sums) above absolute threshold
timestamp utils, mostly useful for debugging/logging purposes
static void drawline(AVFrame *pic, int x, int y, int len, int step)
double * cache[MAX_CHANNELS]
window of filtered samples (N ms)
struct integrator i3000
3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
double integrated_loudness
integrated loudness in LUFS (I)
double * true_peaks
true peaks per channel
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
static const uint8_t font_colors[]
#define AV_CH_LOW_FREQUENCY
int meter
select a EBU mode between +9 and +18
#define AV_LOG_VERBOSE
Detailed information.
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
A histogram is an array of HIST_SIZE hist_entry storing all the energies recorded (with an accuracy o...
AVFrame * outpicref
output picture reference, updated regularly
A filter pad used for either input or output.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
A link between two filters.
libswresample public header
double * sample_peaks
sample peaks per channel
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const uint8_t avpriv_cga_font[2048]
int min_samples
Minimum number of samples to filter at once.
int sample_rate
samples per second
int count
how many times the corresponding value occurred
static const uint16_t mask[17]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define av_ts2timestr(ts, tb)
Convenience macro, the return value should be used only directly in function arguments but never stan...
unsigned nb_outputs
number of output pads
The libswresample context.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
void * priv
private data for use by the filter
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link...
simple assert() macros that are a bit more flexible than ISO C assert().
struct AVFilterChannelLayouts * out_channel_layouts
AVFilterFormats * in_formats
Lists of formats and channel layouts supported by the input and output filters respectively.
#define MOVE_TO_NEXT_CACHED_ENTRY(time)
struct integrator i400
400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
int w
agreed upon image width
static av_cold void uninit(AVFilterContext *ctx)
char * av_asprintf(const char *fmt,...)
int * y_line_ref
y reference values for drawing the LU lines in the graph and the gauge
int attribute_align_arg swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count, const uint8_t *in_arg [SWR_CH_MAX], int in_count)
struct rect graph
rectangle for the main graph in the center
audio channel layout utility functions
double loudness
L = -0.691 + 10 * log10(E)
double rel_threshold
relative threshold
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
AVFilterContext * src
source filter
int partial_buf_size
Size of the partial buffer to allocate.
double loudness_range
loudness range in LU (LRA)
static const AVFilterPad inputs[]
AVFilterFormats * out_samplerates
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
static const AVFilterPad outputs[]
int format
agreed upon media format
A list of supported channel layouts.
#define AV_LOG_INFO
Standard information.
AVFilterFormats * in_samplerates
Lists of channel layouts and sample rates used for automatic negotiation.
char * av_strdup(const char *s)
Duplicate a string.
AVSampleFormat
Audio sample formats.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
#define ABS_THRES
silence gate: we discard anything below this absolute (LUFS) threshold
av_cold void swr_free(SwrContext **ss)
Free the given SwrContext and set the pointer to NULL.
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
int nb_kept_powers
number of sum above absolute threshold
Describe the class of an AVClass context structure.
Rational number (pair of numerator and denominator).
const char * name
Filter name.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
offset must point to two consecutive integers
AVFilterLink ** outputs
array of pointers to output links
enum MovChannelLayoutTag * layouts
static enum AVPixelFormat pix_fmts[]
int dual_mono
whether or not to treat single channel input files as dual-mono
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
struct rect text
rectangle for the LU legend on the left
internal math functions header
static const AVFilterPad ebur128_inputs[]
int h
size of the video output
#define PRINT_PEAK_SUMMARY(str, sp, ptype)
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
struct rect gauge
rectangle for the gauge on the right
uint64_t channel_layout
channel layout of current buffer (see libavutil/channel_layout.h)
static int config_audio_input(AVFilterLink *inlink)
static int gate_update(struct integrator *integ, double power, double loudness, int gate_thres)
int loglevel
log level for frame logging
double x[MAX_CHANNELS *3]
3 input samples cache for each channel
#define FILTER(Y, X, name)
double lra_high
low and high LRA values
AVFilterContext * dst
dest filter
#define CONFIG_SWRESAMPLE
static enum AVSampleFormat sample_fmts[]
double sum[MAX_CHANNELS]
sum of the last N ms filtered samples (cache content)
double z[MAX_CHANNELS *3]
3 RLB-filter samples cache for each channel
#define SET_META(name, var)
int peak_mode
enabled peak modes
#define av_malloc_array(a, b)
double * ch_weighting
channel weighting mapping
double pan_law
pan law value used to calculate dual-mono measurements
int av_opt_set_sample_fmt(void *obj, const char *name, enum AVSampleFormat fmt, int search_flags)
static int ff_insert_outpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new output pad for the filter.
AVPixelFormat
Pixel format.
int nb_samples
number of audio samples (per channel) described by this frame
static const uint8_t graph_colors[]
CGA/EGA/VGA ROM font data.
AVFilterFormats * out_formats
av_cold int swr_init(struct SwrContext *s)
Initialize context after user parameters have been set.
double energy
E = 10^((L + 0.691) / 10)
int filled
1 if the cache is completely filled, 0 otherwise
static const uint8_t * get_graph_color(const EBUR128Context *ebur128, int v, int y)