mlflow.h2o
The mlflow.h2o
module provides an API for logging and loading H2O models. This module exports
H2O models with the following flavors:
- H20 (native) format
This is the main flavor that can be loaded back into H2O.
mlflow.pyfunc
Produced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.h2o.
get_default_conda_env
()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.h2o.
load_model
(model_uri)[source] Load an H2O model from a local file (if
run_id
isNone
) or a run. This function expects there is an H2O instance initialised withh2o.init
.- Parameters
model_uri –
The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
For more information about supported URI schemes, see Referencing Artifacts.
- Returns
-
mlflow.h2o.
log_model
(h2o_model, artifact_path, conda_env=None, registered_model_name=None, **kwargs)[source] Log an H2O model as an MLflow artifact for the current run.
- Parameters
h2o_model – H2O model to be saved.
artifact_path – Run-relative artifact path.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'h2o==3.20.0.8' ] ] }
registered_model_name – Note:: Experimental: This argument may change or be removed in a future release without warning. If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.kwargs – kwargs to pass to
h2o.save_model
method.
-
mlflow.h2o.
save_model
(h2o_model, path, conda_env=None, mlflow_model=<mlflow.models.Model object>, settings=None)[source] Save an H2O model to a path on the local file system.
- Parameters
h2o_model – H2O model to be saved.
path – Local path where the model is to be saved.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'h2o==3.20.0.8' ] ] }
mlflow_model –
mlflow.models.Model
this flavor is being added to.