mlflow.xgboost
The mlflow.xgboost module provides an API for logging and loading XGBoost models.
This module exports XGBoost models with the following flavors:
- XGBoost (native) format
This is the main flavor that can be loaded back into XGBoost.
mlflow.pyfuncProduced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.xgboost.autolog(importance_types=['weight'])[source] Note
Experimental: This method may change or be removed in a future release without warning.
Enables automatic logging from XGBoost to MLflow. Logs the following.
parameters specified in xgboost.train.
metrics on each iteration (if
evalsspecified).metrics at the best iteration (if
early_stopping_roundsspecified).feature importance as JSON files and plots.
trained model.
Note that the scikit-learn API is not supported.
- Parameters
importance_types – importance types to log.
-
mlflow.xgboost.get_default_conda_env()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()andlog_model().
-
mlflow.xgboost.load_model(model_uri)[source] Load an XGBoost model from a local file or a run.
- Parameters
model_uri –
The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/modelrelative/path/to/local/models3://my_bucket/path/to/modelruns:/<mlflow_run_id>/run-relative/path/to/model
For more information about supported URI schemes, see Referencing Artifacts.
- Returns
An XGBoost model (an instance of xgboost.Booster)
-
mlflow.xgboost.log_model(xgb_model, artifact_path, conda_env=None, registered_model_name=None, **kwargs)[source] Log an XGBoost model as an MLflow artifact for the current run.
- Parameters
xgb_model – XGBoost model (an instance of xgboost.Booster) to be saved. Note that models that implement the scikit-learn API are not supported.
artifact_path – Run-relative artifact path.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env(). IfNone, the defaultget_default_conda_env()environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'xgboost==0.90' ] ] }
registered_model_name – Note:: Experimental: This argument may change or be removed in a future release without warning. If given, create a model version under
registered_model_name, also creating a registered model if one with the given name does not exist.kwargs – kwargs to pass to xgboost.Booster.save_model method.
-
mlflow.xgboost.save_model(xgb_model, path, conda_env=None, mlflow_model=<mlflow.models.Model object>)[source] Save an XGBoost model to a path on the local file system.
- Parameters
xgb_model – XGBoost model (an instance of xgboost.Booster) to be saved. Note that models that implement the scikit-learn API are not supported.
path – Local path where the model is to be saved.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this describes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env(). IfNone, the defaultget_default_conda_env()environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pip': [ 'xgboost==0.90' ] ] }
mlflow_model –
mlflow.models.Modelthis flavor is being added to.