mlflow.tensorflow
The mlflow.tensorflow
module provides an API for logging and loading TensorFlow models.
This module exports TensorFlow models with the following flavors:
- TensorFlow (native) format
This is the main flavor that can be loaded back into TensorFlow.
mlflow.pyfunc
Produced for use by generic pyfunc-based deployment tools and batch inference.
-
mlflow.tensorflow.
autolog
(every_n_iter=100)[source] Note
Experimental: This method may change or be removed in a future release without warning.
Enable automatic logging from TensorFlow to MLflow. If applicable, model checkpoints are logged as artifacts to a ‘models’ directory, along with any TensorBoard log data.
Refer to the tracking documentation for information on what is logged with different TensorFlow workflows.
- Parameters
every_n_iter – The frequency with which metrics should be logged. Defaults to 100. Ex: a value of 100 will log metrics at step 0, 100, 200, etc.
-
mlflow.tensorflow.
get_default_conda_env
()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.tensorflow.
load_model
(model_uri, tf_sess=None)[source] Load an MLflow model that contains the TensorFlow flavor from the specified path.
With TensorFlow version <2.0.0, this method must be called within a TensorFlow graph context.
- Parameters
model_uri –
The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
For more information about supported URI schemes, see Referencing Artifacts.
tf_sess – The TensorFlow session in which to load the model. If using TensorFlow version >= 2.0.0, this argument is ignored. If using TensorFlow <2.0.0, if no session is passed to this function, MLflow will attempt to load the model using the default TensorFlow session. If no default session is available, then the function raises an exception.
- Returns
For TensorFlow < 2.0.0, a TensorFlow signature definition of type:
tensorflow.core.protobuf.meta_graph_pb2.SignatureDef
. This defines the input and output tensors for model inference. For TensorFlow >= 2.0.0, A callable graph (tf.function) that takes inputs and returns inferences.
import mlflow.tensorflow import tensorflow as tf tf_graph = tf.Graph() tf_sess = tf.Session(graph=tf_graph) with tf_graph.as_default(): signature_definition = mlflow.tensorflow.load_model(model_uri="model_uri", tf_sess=tf_sess) input_tensors = [tf_graph.get_tensor_by_name(input_signature.name) for _, input_signature in signature_definition.inputs.items()] output_tensors = [tf_graph.get_tensor_by_name(output_signature.name) for _, output_signature in signature_definition.outputs.items()]
-
mlflow.tensorflow.
log_model
(tf_saved_model_dir, tf_meta_graph_tags, tf_signature_def_key, artifact_path, conda_env=None, registered_model_name=None)[source] Note
This method requires all argument be specified by keyword.
Log a serialized collection of TensorFlow graphs and variables as an MLflow model for the current run. This method operates on TensorFlow variables and graphs that have been serialized in TensorFlow’s
SavedModel
format. For more information aboutSavedModel
format, see the TensorFlow documentation: https://www.tensorflow.org/guide/saved_model#save_and_restore_models.This method saves a model with both
python_function
andtensorflow
flavors. If loaded back using thepython_function
flavor, the model can be used to predict on pandas DataFrames, producing a pandas DataFrame whose output columns correspond to the TensorFlow model’s outputs. The python_function model will flatten outputs that are length-one, one-dimensional tensors of a single scalar value (e.g.{"predictions": [[1.0], [2.0], [3.0]]}
) into the scalar values (e.g.{"predictions": [1, 2, 3]}
), so that the resulting output column is a column of scalars rather than lists of length one. All other model output types are included as-is in the output DataFrame.- Parameters
tf_saved_model_dir – Path to the directory containing serialized TensorFlow variables and graphs in
SavedModel
format.tf_meta_graph_tags – A list of tags identifying the model’s metagraph within the serialized
SavedModel
object. For more information, see thetags
parameter of thetf.saved_model.builder.SavedModelBuilder
method.tf_signature_def_key – A string identifying the input/output signature associated with the model. This is a key within the serialized
SavedModel
signature definition mapping. For more information, see thesignature_def_map
parameter of thetf.saved_model.builder.SavedModelBuilder
method.artifact_path – The run-relative path to which to log model artifacts.
conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'tensorflow=1.8.0' ] }
registered_model_name – Note:: Experimental: This argument may change or be removed in a future release without warning. If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.
-
mlflow.tensorflow.
save_model
(tf_saved_model_dir, tf_meta_graph_tags, tf_signature_def_key, path, mlflow_model=<mlflow.models.Model object>, conda_env=None)[source] Note
This method requires all argument be specified by keyword.
Save a serialized collection of TensorFlow graphs and variables as an MLflow model to a local path. This method operates on TensorFlow variables and graphs that have been serialized in TensorFlow’s
SavedModel
format. For more information aboutSavedModel
format, see the TensorFlow documentation: https://www.tensorflow.org/guide/saved_model#save_and_restore_models.- Parameters
tf_saved_model_dir – Path to the directory containing serialized TensorFlow variables and graphs in
SavedModel
format.tf_meta_graph_tags – A list of tags identifying the model’s metagraph within the serialized
SavedModel
object. For more information, see thetags
parameter of thetf.saved_model.builder.savedmodelbuilder
method.tf_signature_def_key – A string identifying the input/output signature associated with the model. This is a key within the serialized
savedmodel
signature definition mapping. For more information, see thesignature_def_map
parameter of thetf.saved_model.builder.savedmodelbuilder
method.path – Local path where the MLflow model is to be saved.
mlflow_model – MLflow model configuration to which to add the
tensorflow
flavor.conda_env –
Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, the defaultget_default_conda_env()
environment is added to the model. The following is an example dictionary representation of a Conda environment:{ 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'tensorflow=1.8.0' ] }